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1.  Introduction 

 What is the optimal dividend strategy, that is, the strategy that maximizes the 

expectation of the discounted dividends until the possible ruin of a company?  De Finetti 

(1957) formulated the problem and solved it under the assumption that the surplus of the 

company is a discrete process, with steps of size plus or minus one only.  In this model as 

well as in its continuous counterpart (where the surplus of the company is modeled by a 

Wiener process), the optimal strategy is a barrier strategy.  Such a strategy is defined by 

a positive parameter b, which is the level of the dividend barrier.  The modified surplus 

process is obtained from the original surplus process by reflection at the level b, and the 

dividend stream is the overflow.  For each given b > 0, the value of the barrier strategy 

can be calculated explicitly; hence the optimal value of the parameter b can be 

determined. 
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 Barrier strategies are the solution to a mathematical problem, but the resulting 

dividend stream is far from practical acceptance.  Furthermore, if a barrier strategy is 

applied, ultimate ruin of the company is certain.  These considerations lead to the idea of 

imposing restrictions on the nature of the dividend stream, resulting in optimization 

problems with additional constraints. 

 Jeanblanc-Picqué and Shiryaev (1995) and Asmussen and Taksar (1997) 

postulated a bounded dividend rate, that is, that the dividends paid per unit time should 

not exceed an upper bound, which is denoted by α in the following.  They show that the 

optimal dividend strategy is now a generalized barrier strategy, which we call a 

threshold strategy.  According to such a strategy, dividends are paid at a constant rate 

α whenever the modified surplus is above the threshold b, and no dividends are paid 

whenever the modified surplus is below b.  Thus the surplus process undergoes what 

might be called a stochastic refraction.  Note that a threshold strategy is a bang-bang 

strategy.   

The purpose of this note is to present some elementary and down-to-earth 

calculations in this context.  In Sections 2 and 3, closed form expressions for the value of 

a threshold strategy with an arbitrary parameter b are obtained.  Based on these, the 

optimal value of b is easily obtained in Section 4.  Several characterizations of the 

optimal breakpoint are given in Section 5.  In Section 6, the Laplace transform of the time 

to ruin is derived.  If α is less than the drift of the Wiener process, ruin is not certain, and 

its probability is determined.  In the opposite case, the distribution of the total 

(undiscounted) dividends until ruin is discussed in Section 7.  In Section 8, it is shown 
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how the higher order moments and the moment-generating function of the random 

variable of discounted dividends can be determined.   

 A review of the literature can be found in Taksar (2001) and Gerber and Shiu 

(2004a).  A recent paper by Boguslavskaya (2003) has generalized the model to the case 

where the company has a constant salvage value at ruin.  Gerber and Shiu (2004b) study 

the problem in the classical setting – that the aggregate claims are modeled as a 

compound Poisson process.  Li and Garrido (2005) study barrier strategies where the time 

between successive claims is the sum of a fixed number of independent exponential 

random variables. 

 

2. The Wiener Process Model and Basic Results 

Consider a company with initial surplus or equity x > 0.  If no dividends were 

paid, the surplus at time t would be 

  X(t)  =  x  +  µt  +  σW(t),  t ≥ 0,   (2.1) 

with µ > 0, σ > 0, and {W(t)} being a standard Wiener process.  The company will pay 

dividends to its shareholders.  For t ≥ 0, let D(t) denote the aggregate dividends paid by 

time t.  It is assumed that the payment of dividends has no influence on the business.  

Thus, 

   X~ (t)  =  X(t)  –  D(t)      (2.2) 

is the company’s surplus at time t.  As a reminder that there are dividend payments, we 

shall call X~ (t) the modified surplus.  Let δ > 0 be the force of interest for valuation, and 

let D denote the present value of all dividends until ruin, 

    D  =  0
T∫ e–δt dD(t),     (2.3) 
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where  

          T  =  inf{t ≥ 0 | X~ (t)  =  0}    (2.4)  

is the time of ruin. 

 We shall assume that the company pays dividends according to the following 

strategy governed by parameters b > 0 and α > 0.  Whenever the modified surplus is 

below the level b, no dividends are paid.  However, when the modified surplus is above 

b, dividends are paid continuously at a constant rate α.  Thus the threshold b plays the 

role of a break point or a regime-switching boundary.  With I(.) denoting the indicator 

function, an alternative expression for D is 

      D  =  α
0
T∫ e–δt I( X~ (t) > b) dt  =  α[ a T |  –  

0
T∫ e–δt I( X~ (t) < b) dt]. (2.5) 

 For x ≥ 0, we use the symbol V(x; b) to denote the expectation of D, 

    V(x; b)  =  E[D | X(0) = x].    (2.6) 

For x ∈ (0, b), V(x; b) satisfies the homogeneous second-order differential equation 

   
σ2

2
V″(x; b)  +  µV′(x; b)  –  δV(x; b)  =  0,   (2.7) 

with the initial condition 

    V(0; b)  =  0,      (2.8) 

because T = 0 if x = 0.  It follows that 

   V(x; b)  =  C(b)(erx  –  esx) for 0 ≤ x ≤ b,   (2.9) 

with the coefficient C(b) being independent of x, and r and s being the roots of the 

characteristic equation 

   
σ2

2
ξ2  +  µξ  –  δ  =  0.     (2.10) 
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We let r denote the positive and s the negative root: 

   r  =  
−µ + µ2 + 2δσ2

σ2 ,     (2.11) 

   s  =  
−µ − µ2 + 2δσ2

σ2 .     (2.12) 

 For x > b, the modified surplus process behaves like a Brownian motion with drift 

µ – α and variance per unit time σ2.  Now, V(x; b) satisfies the nonhomogeneous second-

order differential equation 

    
σ2

2
V″(x; b)  +  (µ – α)V′(x; b)  –  δV(x; b)  +  α  =  0,  (2.13) 

a particular solution of which is α/δ.  If there is infinite surplus, then the dividends are a 

continuous perpetuity of amount α per unit time.  Thus we have the condition 

   V(x; b) →  α
δ

   for x → ∞.    (2.14) 

It follows that 

   V(x; b)  =  α
δ

  +  G(b)eux  for x ≥ b,  (2.15) 

where the coefficient G(b) is independent of x, and u is the negative root of the 

characteristic equation of (2.13), namely, 

   u  =  −(µ − α) − (µ − α)2 + 2δσ2

σ2 .    (2.16) 

It is useful to rewrite (2.16) as 

   u  =  −2δ

(α −µ) + (α −µ)2 + 2δσ2
.    (2.17) 
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 Using the continuity of the functions V(x; b) and V′(x; b) at x = b, we obtain from 

(2.9) and (2.15) the conditions: 

   C(b)(erb  –  esb)  =  α
δ

  +  G(b)eub,    (2.18) 

   C(b)(erbr  –  esbs)  =  G(b)eubu,    (2.19) 

from which we can determine the values of the coefficients C(b) and G(b).  Multiplying 

(2.18) by u and subtracting it from (2.19) yields 

   C(b)[erb(r – u)  –  esb(s – u)]  =  α
δ

(–u). 

Thus 

   C(b)  =  α
δ

–u
erb (r − u) +  esb(u − s)

,    (2.20) 

and 

   G(b)  =  – α
δ

erbr −  esbs
erb (r − u) +  esb(u − s)

e–ub.   (2.21) 

Hence 

  V(x; b)  =  α
δ

(erx −  esx)(−u)
erb (r − u) +  esb(u − s)

  for 0 ≤ x ≤ b,  (2.22) 

and 

  V(x; b)   =  α
δ

  –  α
δ

erbr −  esbs
erb (r − u) +  esb(u − s)

eu(x–b) for x ≥ b. (2.23)  

 

Remark  The barrier strategy (discussed in Gerber and Shiu 2004a) can be viewed as the 

limit α → ∞.  We see from (2.17) that u ↑ 0 and 

    lim
α→∞

 α u  =  –δ.     (2.24) 
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It follows from (2.22) and (2.24) that 

  lim
α→∞

 V(x; b)  =  
erx −  esx

erbr − esbs
  for 0 ≤ x ≤ b,   (2.25) 

which is (2.11) in Gerber and Shiu (2004a).  Now, consider x > b, and rewrite (2.23) as 

          V(x; b) =  [V(x; b)  –  V(b; b)]  +  V(b; b) 

  =  α
δ

[1 – eu(x–b)] erbr −  esbs
erb(r − u) +  esb(u − s)

  +  α
δ

(–u) erb −  esb

erb(r − u) +  esb(u − s)
. 

Then, 

  lim
α→∞

 V(x; b)  =  (x – b)  +  
erb −  esb

erbr − esbs
 for x > b  (2.26) 

by (2.24).  The term (x – b) is the amount of dividends paid instantly at time 0. 

 

3. Alternative Derivation 

 For X(0) = x ≤ b, the ratio (erx – esx)/(erb – esb) is the expected discounted value of 

a contingent payment of 1, payable as soon as the surplus reaches level b, provided ruin 

has not yet occurred.  See, for example, (2.17) in Gerber and Shiu (2004a).  Thus, we 

have the formula 

  V(x; b)  =  erx −  esx

erb −  esb V(b; b)  for 0 ≤ x ≤ b,   (3.1) 

which is consistent with (2.9). 

 For X(0) = x > b, let τ be the time when the modified surplus drops to the level b 

for the first time.  Then 

  V(x; b) =  E[α a τ |  +  V(b; b)e−δτ]  =  α
δ

  –  [ α
δ

  –  V(b; b)]E[e−δτ]. 

Because E[e−δτ]  =  eu(x–b),  we have 
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  V(x; b)  =  α
δ

  –  [ α
δ

  –  V(b; b)]eu(x–b) for x ≥ b,  (3.2) 

which is consistent with (2.23).   

 To derive the value of V(b; b), we use the condition that V(x; b) is continuously 

differentiable.  From V′(b–; b)  =  V′(b+; b), we have 

  erbr −  esbs
erb −  esb V(b; b)  =  [ α

δ
  –  V(b; b)](−u), 

or 

  V(b; b)  =  α
δ

(erb −  esb)(−u)
erb(r − u) +  esb(u − s)

.     (3.3) 

 

4. Optimal Threshold 

 For given dividend rate α > 0, let b* be the optimal value of b, that is, the value 

that maximizes V(x; b).  That this value does not depend on the initial surplus x can be 

seen as follows.  From (2.9) and (2.15) we see that maximizing V(x; b) means 

maximizing C(b) and G(b), respectively.  That C(b) and G(b) can be maximized 

simultaneously follows from the following relation between their derivatives, 

   
db

dC(b) (erb  –  esb)  =  
db

dG(b) eub,    (4.1)  

which is obtained by differentiating (2.18) with respect to b and using (2.19) for a 

cancellation.  Setting the derivative of the denominator in (2.22) with respect to b equal 

to 0, we obtain 

    b*  =  
1

r − s
 ln( s2 − us

r2 − ur
)    (4.2) 

as a preliminary result. 
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 It seems that the higher the dividend rate α, the higher the optimal threshold b* 

need to be.  We now verify this by showing the derivative db*/dα is positive.  The value 

b* is a function of α through u, which is defined by (2.16).  Let us write 

    u  =  u(α).      (4.3) 

From (2.16) and (2.12), we see that  

u(0)  =  s       (4.4) 

and that u(α) is an increasing function of α.  Thus u' > 0.  Differentiating (4.2), we have 

by the chain rule 

   db*
dα

 =  
1

r − s
( −su'

s2 − us
  –  

−ru'
r2 − ur

) 

    =  
1

r − s
( −1

s −u
  –  

−1
r −u

)u' 

    =  
u'

(r − u)(u −s)
,     (4.5) 

which is indeed positive for α > 0. 

The expression on the right-hand side of (4.2) can be negative.  It is 0 for  

    u  =  r  +  s  =  –2µ/σ2.     (4.6) 

Applying this condition to (2.16), we find that the right-hand side of (4.2) vanishes if 

     2µα  =  δσ2.     (4.7)  

Let us write 

     R  =  
2µ
σ2      (4.8) 

to emphasize its correspondence with the adjustment coefficient in classical risk theory.  

It follows from (4.7) that the optimal value of b is given by (4.2) if  
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     α
δ

  >  
1
R

.     (4.9) 

If condition (4.9) is violated, i.e., if 

    α
δ

  ≤  
1
R

,     (4.10) 

the optimal value of b is 0.  Then the expected present value of dividends is 

    V(x; 0)  =  α
δ

(1  –  eux)    (4.11) 

by (2.23).  This formula follows also from the observation that the dividend stream is 

constant between time 0 and the time of ruin, and hence it can be evaluated as the 

difference between a perpetuity and a deferred perpetuity.  With α = 1, formula (4.11) 

corresponds to the well-known life contingencies formula 

    a y  =  1
δ

(1  –  A y ). 

 

5. Discussion of the Optimal Threshold 
 
 Throughout this section we assume that α is sufficiently large, so that (4.9) holds 

and the optimal value of b is given by (4.2). 

 The optimal threshold b* can be characterized by the condition that the second 

derivative V″(x; b) is continuous at x = b.  Thus 

   V″(b+; b)  =  V″(b–; b)     (5.1) 

if and only if b = b*.  This condition is known as a high contact condition in finance 

literature and a smooth pasting condition in literature on optimal stopping.  To see this, 

observe that the k-th derivatives of (2.22) and (2.23) with respect to x are 



11 

  V(k)(x; b)  =  α
δ

(erxrk −  esxsk )(−u)
erb(r − u) +  esb(u − s)

  for x < b, (5.2) 

and 

  V(k)(x; b)  =  – α
δ

erbr −  esbs
erb (r − u) +  esb(u − s)

eu(x–b)uk for x > b, (5.3) 

respectively.  Thus, (5.1) holds if and only if 

   (erbr2  –  esbs2)  =  (erbr  –  esbs)u, 

which holds if and only b = b* as given in (4.2), 

 There is a second characterization of the optimal threshold b*.  To obtain it, we 

set x = b– in the differential equation (2.7) and x = b+ in (2.13).  Taking their difference 

yields the formula 

  V′(b; b)  =  1  +  σ2

2α
[V″(b+; b)  –  V″(b–; b)].   (5.4) 

From this and the first characterization it follows that  

    V′(b; b)  =  1       (5.5) 

if and only if b =  b*.   

 This second characterization is somewhat surprising because in the case of a 

barrier strategy, condition (5.5) holds for all b; see (2.25) and (2.26).  Also, it thus 

follows from (2.9) that 

   V(x; b*)  =  erx − esx

rerb* − sesb* ,  0 ≤ x ≤ b*.  (5.6) 

By comparing  (5.6) with (2.26), we find the following astonishing result: Consider the 

threshold strategy with optimal break point b*.  Then for 0 ≤  x ≤ b*, the expected value 

of  D is identical to the expected value of the discounted dividends under the barrier 

strategy (α = ∞) with parameter equal b*. 
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Remarks  (i) In the literature, there are alternative expressions for b*.  Applying (5.2), 

with k = 1, to condition (5.5), with b =  b*, yields 

     α
δ

(erb*r −  esb*s)(−u)
erb* (r − u) +  esb* (u − s)

  =  1, 

or 

  α
δ

[e(r–s)b*r  –  s]  =  1
−u

[e(r–s)b*(r – u)  +  (u – s)]. 

With the definition 

    q  =  α
δ

  +  1
u

,      (5.7) 

we obtain 

          b*  =  
1

r − s
 ln(1− qs

1− qr
).     (5.8) 

This alternative expression for b* is (2.26) of Asmussen and Taksar (1997).  Formula 

(2.27) of Jeanblanc-Picqué and Shiryaev (1995) gives an expression for the hyperbolic 

tangent of b*(r – s)/2. 

(ii) From (2.15), we see that 

   V(x; b)  =  α
δ

  +  
u
1 V′(x; b)  for x > b.  (5.9) 

Setting b = b* and x = b*, and using condition (5.5) with b =  b*, we obtain 

   V(b*; b*)  =  α
δ

  +  
u
1

⋅1  =  q.    (5.10) 

Thus q is the maximal value of the discounted dividends until ruin if the initial surplus is 

b*.  Now, it follows from (3.2) and (5.10) that 
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   V(x; b*)  =  α
δ

  +  
u
1 eu(x–b*)  for  x ≥ b*,  (5.11) 

and from (3.1) and (5.10) that 

   V(x; b*)  =  erx −  esx

erb* − esb* q  for 0 ≤ x ≤ b*.  (5.12)  

Formulas (5.11) and (5.12) are (2.33) in Jeanblanc-Picqué and Shiryaev (1995) and (2.28) 

in Asmussen and Taksar (1997).  It is interesting to rewrite (5.11) as 

  V(x; b*)  =  q  +  a x−b*|  =  V(b*; b*)  +  a x−b*| for x ≥ b*, (5.13) 

where the annuity is evaluated at the force of interest –u.  Note that (5.11) and the 

continuity of V″(x; b*) at x = b* show that  

    V″(b*; b*)  =  u.     (5.14) 

(iii) It follows from (2.7) and the two characterizations of b* that 

   
σ2

2
V″(b*; b*)  +  µ  –  δV(b*; b*)  =  0.   (5.15) 

Applying (5.14) to (5.15) yields 

   V(b*; b*)  =  
µ
δ

  +  uσ2

2δ
,     (5.16) 

which must be another expression for q.   

(iv) Consider the limit α → ∞.  It follows from (4.2) that 

   lim
α→∞

 b*  =  
1

r − s
 ln( s2

r2 )  =  
2

r − s
 ln( −s

r
),   (5.17) 

which is (10.2) in Gerber (1972) and (5.2) in Gerber and Shiu (2004a).  In Section 2, we 

have noted that u ↑ 0 as α → ∞.  Thus, from (5.16) we immediately obtain 

    lim
α→∞

V(b*; b*)  =  
µ
δ

,     (5.18) 
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which has been obtained by Gerber (1972).  With α = ∞ and b* < ∞, ruin is certain.  

However, µ/δ is identical to the present value of a perpetuity with continuous payments at 

a rate of µ.  The intriguing formula (5.18) also follows from (5.10) and the result 

    lim
α→∞

 q  =  
µ
δ

.      (5.19) 

Finally, we note that (5.19) implies q/α → 0, which is equivalent to (2.24). 

 

6. The Distribution of T under a Threshold Strategy 

 Consider that the threshold strategy with threshold b being applied.  We are 

interested in the distribution of the time of ruin, T.  In this section, we calculate 

   L(x; b)  =  E[e–δT | X(0) = x],     (6.1) 

where x = X(0) is the initial surplus or capital.  This is the expected present value of a 

payment of 1 at the time of ruin, and at the same time, the Laplace transform of the 

probability density function of T. 

 As a function of the initial surplus x, 0 < x < b, L(x; b) satisfies the homogeneous 

second-order differential equations 

  
σ2

2
L″(x; b)  +  µL′(x; b)  –  δL(x; b)  =  0   for 0 < x < b,  (6.2) 

and 

  
σ2

2
L″(x; b)  +  (µ – α)L′(x; b)  –  δL(x; b)  =  0 for x > b. (6.3) 

If X(0) = x = ∞, then T = ∞.  Thus we have the condition 

          lim
x →∞

L(x; b)  =  0.      (6.4) 

Subject to (6.4), the solution of (6.3) is 
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   L(x; b)  =  eu(x–b)L(b; b), x ≥ b,    (6.5) 

where u is given by (2.16), the negative root of the characteristic equation of (6.3).  

Formula (6.5) can be understood in terms of the time decomposition, T = τ + (T – τ), 

where the stopping time τ was defined in Section 3. 

 If X(0) = x = 0, then T = 0.  Thus 

    L(0; b)  =  1.      (6.6) 

Subject to condition (6.6), the solution of (6.2) is 

   L(x; b)  =  esx  +  a(erx  –  esx),      (6.7) 

where r and s are given by (2.11) and (2.12), respectively, and the coefficient a is 

determined by the continuity of the functions L(x; b) and L′(x; b) at x = b:  

   esb  +  a(erb  –  esb)  =  L(b; b),     (6.8) 

   esbs  +  a(erbr  –  esbs)  =  L(b; b)u.    (6.9) 

Multiplying (6.8) with u and subtracting it from (6.9) yields 

  esb(s – u)  +  a[erb(r – u)  –  esb(s – u)]  =  0.    (6.10) 

Thus, 

   a  =  
(u − s)esb

(u − s)esb + (r − u)erb .     (6.11) 

From this and (6.7), we obtain the Laplace transform of T for 0 ≤ x ≤ b: 

 L(x; b)  =  
(u − s)esb+rx + (r −u)erb+sx

(u − s)esb + (r −u)erb   =  
(u − s)e−r( b−x) + (r −u)e−s( b−x)

(u − s)e−rb + (r − u)e−sb . (6.12) 

In particular, 

   L(b; b)  =  
r − s

(r − u)e−sb + (u − s)e−rb ,    (6.13) 

which is needed for evaluating (6.5).   
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Remarks (i) In the limit α → ∞, we have u = 0.  Then (6.12) is (3.7) in Gerber and Shiu 

(2004a) and can be found in Cox and Miller (1965, p. 233, Example 5.6). 

(ii) Since δ > 0, 

  E[e–δT | X(0) = x]  =  E[e–δT I(T < ∞) | X(0) = x].   (6.14) 

Thus, 

 lim
δ↓0

 L(x; b)  =  E[I(T < ∞) | X(0) = x]  =  Pr(T < ∞ | X(0) = x)  =  ψ(x), (6.15) 

the probability of ruin.  If α ≥ µ, ruin is certain.  Hence we now assume α < µ.  It follows 

from (2.11), (2.12) and (2.16) that 

   lim
δ →0

 r  =  0,        (6.16) 

   lim
δ →0

 s  =  –
2µ
σ2   =  –R,      (6.17) 

and 

    lim
δ →0

 u  =  – 2(µ − α)
σ2   =  –R  +  2α

σ2 ,    (6.18) 

respectively.  Thus (6. 12) and (6.5) become 

   ψ(x)  =  α + (µ − α)eR(b−x)

α + (µ − α)eRb  for 0 ≤ x ≤ b,   (6.19) 

and 

          ψ(x)  =  e−2(µ−α )(x−b) /σ 2
ψ(b)  =  µe−2(µ−α)(x−b) /σ 2

α + (µ − α)eRb   for x > b, (6.20) 

respectively. 

(iii) If α = 0 or if b = ∞, then (6.19) simplifies as 

    ψ(x)  =  e–Rx.      (6.21) 



17 

This is a well-known result; see, for example, Corollary 8.25 in Klugman, Panjer and 

Willmot (2004). 

(iv) Following Deprez (2004), we note that, for X(0) = x and 0 < w < x ≤ b, 

  V(x; b)  =  V(x – w; b – w)  +  L(x – w; b – w)V(w; b).  (6.22) 

Thus, 

  L(x – w; b – w)  =  V(x;b) − V(x − w;b − w)
V(w;b)

,    (6.23) 

which, with (2.22), yields another way to calculate the Laplace transform L. 

(v)  By (2.5), another relation between the functions V and L is 

V(x; b)  = 
α
δ

[1  −  L(x; b)]  –  αE[
0
T∫ vt I( X~ (t) < b) dt].  (6.24) 

(vi)  The situation where dividend payments do not end with ruin is of some 

mathematical interest.  Let W(x; b), –∞ < x <  ∞, denote the expectation of the present 

value of all dividends.  Then, by considering 

  D  =  α 0
∞∫ e–δt I( X~ (t) > b) dt  –  α

T
∞∫ e–δt I( X~ (t) > b) dt, 

we have 

V(x; b)  =  W(x; b)  –  L(x; b)W(0; b),  x ≥ 0.  (6.25) 

The function W(x; b) satisfies the differential equation (2.7), but for –∞ < x <  b.  

Because W(–∞; b) = 0, it follows that 

   W(x; b)  =  κ(b)erx,   –∞ < x ≤  b. 

Similarly, 

          W(x; b)  =  α
δ

  +  γ(b)eux,           x ≥  b.  



18 

The coefficients κ(b) and γ(b) are independent of x and are determined from the smooth 

junction conditions: 

   W(b–; b)  =  W(b+; b), 

   W′(b–; b)  =  W′(b+; b). 

This way, one finds that  

   W(x; b)  =  −u
r − u

α
δ

e–r(b–x),   –∞ < x ≤  b, (6.26) 

and 

   W(x; b)  =  α
δ

  –  r
r − u

α
δ

eu(b–x).           x ≥  b. (6.27) 

The reader may now find it instructive to verify (2.22) and (2.23) by means of (6.25). 

   

7. The Distribution of D(T) 

 If 0 < α < µ, ruin does not occur with positive probability 1 – ψ(x), and therefore 

the aggregate dividends are infinite with positive probability.  Hence we assume α ≥ µ, so 

that D(T) is finite with certainty.  Our first goal is to determine 

        M(x, y; b)  =  E[eyD(T) | X(0) = x],     (7.1) 

the moment-generating function of D(T).  To avoid the question of its existence, we 

consider (7.1) for y < 0. 

 As a function of x, the moment-generating function M(x, y; b) satisfies the 

homogeneous ordinary differential equations 

  
σ2

2
∂2

∂x2 M(x, y; b)  +  µ ∂
∂x

M(x, y; b)  =  0        for  0 < x < b, (7.2) 

and 
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σ2

2
∂2

∂x2 M(x, y; b)  +  (µ – α) ∂
∂x

M(x, y; b)  +  αyM(x, y; b)  =  0    for x > b. (7.3) 

If X(0) = x = ∞, then T = ∞ and D(T) = ∞.  Thus we have the condition 

          lim
x →∞

M(x, y; b)  =  0,     (7.4) 

subject to which, the solution of (7.3) is 

   M(x, y; b)  =  M(b, y; b) ev(x–b),    (7.5) 

where 

   v  =  −(µ − α) − (µ − α)2 − 2αyσ2

σ2     (7.6) 

is the negative root of the characteristic equation of (7.3). 

 If X(0) = x = 0, then T = 0 and D(T) = 0.  Thus 

    M(0, y; b)  =  1.     (7.7) 

Subject to condition (7.7), the solution of (7.2) is 

   M(x, y; b)  =  1  –  a(1  –  e–Rx),    (7.8) 

where the coefficient a is determined by the continuity of the functions M(x, y; b) and 

∂
∂x

M(x, y; b) at x = b:  

   1  –  a(1  –  e–Rb)  =  M(b, y; b),    (7.9) 

    –a R e–Rb  =  M(b, y; b) v.    (7.10) 

These two equations yield 

   a  =  
1

1− (1+ R
v

)e–Rb
,      (7.11) 

applying which to (7.8), we obtain 
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     M(x, y; b) =  1  –  
1− e–Rx

1− (1+ R
v

)e–Rb
   

     =  
(v +R)e−Rb − ve–Rx

(v + R)e−Rb − v
    for 0 ≤ x ≤ b. (7.12) 

Define 

         s x |  =   
eRx −1

R
;      (7.13) 

in this “actuarial” definition, R takes the role of a force of interest.  Then, formula (7.12) 

can be written as 

   M(x, y; b)  =  
1− vs b−x |

1− vs b|
 for 0 ≤ x ≤ b.   (7.14)  

In particular,  

   M(b, y; b)  =  
1

1− vs b|
,      (7.15) 

applying which to (7.5) yields 

   M(x, y; b)  =  
ev(x−b)

1− vs b|
  for x > b.   (7.16) 

 As a check for formula (7.14), we consider α → ∞.  We see from formula (7.6) 

that v → y.  Hence, for 0 ≤ x ≤ b, 

   
∞→α

lim  M(x, y; b)  =  
1− ys b−x |

1− ys b|
,     (7.17) 

which is (6.2) in Gerber and Shiu (2004a). 

 Consider now the case 0 < x < b.  Then D(T) is a compound geometric random 

variable: 

   D(T)  =  D1  +  D2  +  …  +  DN.    (7.18) 
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Here N is the number of times until ruin that the modified surplus returns to the initial 

level x after a visit at the threshold b, and Dn represents the total dividends paid between 

the (n–1) th and n th return to the level x.  It is well known (see, for example, Gerber and 

Shiu 2004a, formula 5.3) that for X(0) = x, the probability that ruin occurs before the 

threshold b is attained is  

   p  =  
eR( b−x ) −1

eRb −1
  =  

s b−x|
s b|

.     (7.19) 

That D(T) has a compound geometric distribution can be confirmed directly: Compare 

(7.14) with (A.5) in the Appendix and note that M(x, y; b) depends on y through v given 

in (7.6).  Moreover, it follows from (A.2) that the common moment-generating function 

of Dn’s is 

  
1

1− vs b−x |
  =  σ2

σ2 + [(µ − α) + (µ − α)2 − 2αyσ2 ]s b−x|

.  (7.20) 

In the limit α → ∞, v = y, and (7.20) is the moment-generating function of an exponential 

random variable with mean s b−x| . 

 In the special case of α = µ, formula (7.6) simplifies as 

   v  =  
− −2µyσ2

σ2   =  – −yR .    (7.21) 

Thus (7.14) becomes 

   M(x, y; b)  =  
1+ −yRs b−x|

1+ −yRs b|

  for 0 ≤ x ≤ b,  (7.22) 

while (7.20) reduces to 

    
1

1+ −yRs b−x|

.     (7.23) 
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Remark  Because y < 0, the formulas for M(x, y; b) are also valid if 0 < α < µ, where 

D(T) = ∞ with positive probability.  Then eyD(T) in (7.1) has the value 0 if T = ∞.  It 

follows that 

   lim
y↑0

 M(x, y; b)  =  Pr(T < ∞)  =  ψ(x).   (7.24) 

From this, the relation 

    lim
y↑0

 v  =  – 2(µ − α)
σ2 ,      (7.25) 

and formulas (7.12) and (7.16), we can retrieve formulas (6.19) and (6.20), respectively. 

 

8. The Moments and the Moment-Generating Function of D 

 Let 

   M(x, y; b)  =  E[eyD | X(0) = x]    (8.1) 

denote the moment-generating function of D.  In Section 7, the case δ = 0 is discussed.  

We assume δ > 0.  Then 0 ≤ D ≤ α/δ, and M(x, y; b) exists for all y. 

 For 0 < x < b, the moment-generating function M satisfies the partial differential 

equation 

   
σ2

2
∂2M
∂x2   +  µ

∂M
∂x

  –  δy
∂M
∂y

  =  0,    (8.2) 

which is the same as (4.3) in Gerber and Shiu (2004a) and generalizes (7.2) above.  For  

x > b, we have 

         
σ2

2
∂2M
∂x2   +  (µ – α)

∂M
∂x

  +  αyM  –  δy
∂M
∂y

  =  0,   (8.3) 

which generalizes (7.3).  The boundary conditions are (7.7) and 
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   lim
x→∞

 M(x, y; b)  =  eyα/δ     (8.4) 

because lim
x→∞

D = α/δ, the present value of a continuous perpetuity of rate α.  Finally, as 

functions of x, M(x, y; b) and ∂
∂x

M(x, y; b) are continuous at the junction x = b. 

 We set  

   M(x, y; b)  =  1  +  
yk

k!k =1

∞

∑ Vk(x; b),    (8.5) 

where 

   Vk(x; b)  =  E[Dk | X(0) = x]     (8.6) 

is the k-th moment of D.  Substitution of (8.5) in (8.2) and (8.3), with subsequent 

comparison of the coefficients of yk, yields the ordinary differential equations 

  
σ2

2
′ ′ V k (x; b)  +  µ ′ V k (x; b)  –  δkVk(x; b)  =  0,   (8.7) 

for 0 < x < b, and 

 
σ2

2
′ ′ V k (x; b)  +  (µ – α) ′ V k (x; b)  –  δkVk(x; b)  +  αkVk–1(x; b)  =  0, (8.8) 

for x > b.  They generalize (2.7) and (2.13), which are for k = 1.  The boundary 

conditions are 

    Vk(0; b)  =  0      (8.9) 

and 

       lim
x→∞

 Vk(x; b)  =  α
δ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k
.     (8.10) 

We shall show how Vk(x; b) can be determined recursively with respect to k. 

 From (8.7) and (8.9), it follows that  
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   Vk(x; b)  =  Ck(b)(erk x   –  esk x ),    (8.11) 

where rk > 0 and sk < 0 are the solutions of the characteristic equation 

   
σ2

2
ξ2  +  µξ  –  δk  =  0,     (8.12) 

and Ck(b), which does not depend on x, has yet to be determined.  The solution of (8.8) 

and (8.10) is of the form 

   Vk(x; b)  =  α
δ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k
  +  

j=1

k

∑ Gj,k(b)eu j(x−b),   (8.13) 

x ≥ b, with uj being the negative solution of the characteristic equation 

   
σ2

2
ξ2  +  (µ – α)ξ  –  δj  =  0.     (8.14) 

Note that r1 = r, s1 = s, u1 = u, and C1(b) = C(b) and G1,1(b) = G(b) are given in (2.20) and 

(2.21), respectively.  Substituting (8.13) and  

  Vk–1(x; b)  =  α
δ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k−1
  +  

j=1

k−1

∑ Gj,k–1(b) eu j(x−b)   (8.15) 

in (8.8) and comparing the coefficients of eu j(x−b) yields the equation 

     [ σ2

2
ξ2  +  (µ – α)ξ  –  δk]Gj,k(b)  +  αk Gj,k–1(b)  =  0.  (8.16) 

From this and the fact that uj is a solution of (8.14), we obtain the recursion 

  Gj,k(b)  =  αk
δ(k − j)

Gj,k–1(b)      (8.17) 

for j = 1, 2, … , k–1.  Finally, Ck(b) and Gk,k(b) are determined from the condition that 

Vk(x; b) and ′ V k (x; b) are continuous at x = b.    

 From (8.17) it follows that 
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   Gj,k(b)  =  α
δ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k− j k
j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Gj,j(b)     (8.18) 

for k = j, j+1, j+2, …  From this and (8.13), we obtain the formula 

  Vk(x; b)  =  α
δ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k
  +  

j=1

k

∑ α
δ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k− j k
j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Gj,j(b) eu j(x−b)   (8.19) 

for x ≥ b.   

 If we substitute (8.19) in (8.5), we obtain after simplification the formula 

  M(x, y; b)  =  eyα/δ  +  eyα/δ

j=1

∞

∑ yj

j!
Gj,j(b) eu j(x−b)   (8.20) 

for x ≥ b.  It is instructive to verify directly that this function satisfies the partial 

differential equation (8.3). 
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Appendix 

 This Appendix presents some equivalent expressions for the moment-generating 

function of a compound geometric random variable, 

   S  =  0     if N = 0, 

   S  =  X1 +  X2  +  …  +  XN  if N ≥ 1.  (A.1) 

Let p and q (p + q = 1) be the parameters of the geometric distribution, Pr(N = 0) = p. 

Let the moment-generating function of each summand, X, be 

    MX(y)  =  
1

1− g(y)
.     (A.2) 

Then the moment-generating function of S is 

               MS(y) =  p
q

1−g(y)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
k

k=0

∞

∑  

    =  
p

1 −  q
1− g(y)

.     (A.3) 

Thus  

   MS(y)  =  
p[1 − g(y)]

p −  g(y)
  =   

1 − g(y)

1 −  g(y)
p

.   (A.4)  

Hence, if a distribution has a moment-generating function of the form 

   M(y)  =  
1 − g(y)

1 −  βg(y)
,      (A.5) 

with β > 1, we can conclude by comparing (A.5) with (A.4) and (A.3) that it is a compound 

geometric distribution.  The geometric distribution has parameter p = 1/β, and the moment-

generating function of each summand is given by (A.2).   

 Finally, writing (A.4) as 
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   MS(y)  =  p  +  q
1

1 −  g(y)
p

,     (A.6) 

we see that the underlying distribution of S is a mixture of the degenerate distribution at 0 

and a distribution with moment-generating function 

     
1

1 −  g(y)
p

.      (A.7) 


