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Abstract

Vanilla interest rate swaps may be viewed as very simple interest rate deriva-

tives, but the implication of entering into such contracts may not be so readily

apparent. In particular, investment managers and asset/liability managers in the

insurance industry are often presented with such contracts from investment banks

as hedging solutions for insurance liabilities, such as fixed annuities. Within the

context of hedging insurance liabilities, if used properly the risk of using interest

rate swaps is not as great as if the swap were used for speculative purposes. How-

ever, we feel it is important for the potential exposure to interest rate risk inherent

in interest rate (IR) swaps, and other interest sensitive financial products, to be

analyzed and understood by all practitioners. Though potential counterparties of

such deals often measure their exposure to default risk, the magnitude of poten-

tial risk due to changing interest rates is not always fully investigated. To quote

renowned hedge fund manager George Soros: ”the risks involved (in IR swap deals)

are not always fully understood, even by sophisticated investors, and I am one of

them.” In this article, we describe a framework for measuring the potential interest

rate exposure of such swaps via modelling of short rates. We will consider generic

interest rate swap deals in several different yield curves environments, and under

various volatility assumptions, and investigate the potential P&L exposure, and

the potential counterparty exposure, under a market-consistent set of yield-curve

scenarios. Further, it is our goal to not only present the current analysis but also

provide practitioners with the background and tools necessary in order to perform

similar analysis. In order to achieve this goal we first provide background on IR

swaps, and the various stochastic interest rate models commonly used in industry,

as well as several other relevant topics.
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1. Some infamous Swap deals in recent history:

Sallie Mae was one of the first institutions to use interest rate swaps in the early 1980’s with

the goal of reducing the duration of its liabilities. Since then, there have been many examples

of interest rate swap deals which have not produced the desired results for the end-user,

largely due to unanticipated interest rate movements. Among them are a vast array of city

governments across the US, including New York, Oakland California, and the Alabama school

district, as well as many universities including Yale, Georgetown University, and Rockefeller

University in New York. Two heavily reported examples are Proctor & Gamble, and Harvard

University. In 1994 Proctor & Gamble claims to have lost nearly $157 million on a subset of

its IR swap deals. Procter & Gamble had been attempting to protect itself against changes

in exchange and sovereign interest rates through the use of plain-vanilla IR swaps. However,

when a rising US interest rate regime materialized, contrary to what had been consistent,

and adamantly, forecasted P&G suffered a substantial loss. Another notable case is Harvard

University’s termination of a subset of its LIBOR pegged IR swaps in 2004. While the authors

strongly believe that derivatives, such as IR swaps, are powerful tools, which when used

properly can effectively transfer risk and enhance the efficiency of markets, it is important

for the potential exposure to interest-rate risk to be analyzed. In this article, we provide the

necessary background to measure this potential exposure. While this paper focuses on the

valuation of interest rate swaps under short rate models, the methods explained can be used for

analyzing any portfolio with interest rate risk, be it swaps, insurance liabilities, or corporate debt.

Harvard University

In late 2009 Harvard University, one of the US’s oldest1 and most prestigious institutions of

higher learning paid $500 million to terminate a subset of its IR swap portfolio. Harvard

entered into the IR swaps to protect against, or hedge against, the potential effect of rising

interest rates on its extant variable-rate debt issuances, as well as on its anticipated future debt

issuances. As noted in Harvard’s 2009 annual report: ”The University has entered into various

interest rate exchange agreements in order to manage the interest cost and risk associated with

its outstanding debt and to hedge issuance of future debt. The interest rate exchange agreements

were not entered into for trading or speculative purposes.” Many of the interest-rate agreements

were entered into during the fiscal year 2004, during a period of low interest rates, in anticipation

of the planned Allston Science Center project, for which construction was set to begin in 2007.

Additional projects to be supported by the swaps included a new medical research building,

a Center for International Studies, and graduate housing. From the end of fiscal year 2004

1William & Mary and the University of Pennsylvania, among others, dispute Harvard’s claim.
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to the end of fiscal year 2005, the notional amount of IR swaps on Harvard’s books jumped

from $1,376.6 million to $3,723.8 million, and the corresponding projected cost to terminate the

swaps jumped from $58.4 million to $461.2 million. By the end of fiscal year 2008 the notional

amount of IR swaps was $3,524.7 million, and the projected cost to terminate the swaps was

$330.4 million. Between 2005 and 2008 the projected cost to terminate the swaps actually

dropped to around $15 million, but in 2008 the financial crises caused interest rates to drop

dramatically, and since Harvard entered the swaps on the pay-fix side, the NPV of the swaps on

Harvard’s books followed suit. To make matters worse, the terms of the interest rate swaps in

which Harvard was involved required the posting of an amount of collateral directly related to

the magnitude of the NPV, by the party2 with negative NPV, which in this case was Harvard.

Further, the stipulated form of collateral was cash. Hence, as Harvard’s NPV on its IR swap

contracts became more and more negative, the amount of cash it had to deliver as collateral

rose. This created an additional dimension to Harvard’s problems; that of liquidity, or more

accurately il liquidity. This increased need to generate more and more liquid cash invariably

played a roll in Harvard’s decision in fiscal year 2009 to pay $497.6 million to terminate a subset

of its interest rate swaps with notional value totaling $1,138.0 million, three of which were tied

to $431.7 million of bonds the university sold in fiscal years 2005 and 2007.

In general, it is important to note that, if interest rates fall shortly after inception of an IR

swap contract, and stay below the rates anticipated by the market at inception, then due to

the way IR swaps are priced, which is discussed in the following section, the fixed-rate payor of

the IR swap will realize a net loss over the life of the swap. However, just because the NPV of

future cash-flows to a counterparty is negative at some point prior to maturity doesn’t mean the

swap will represent a net loss if held to maturity. In particular, the greater the time remaining

till expiration of the swap, the greater the chance that rates will move favorable. Of course,

by the same token, the greater the time remaining, the more opportunity for unfavorable rate

movements, as well. In the case of Harvard, the exact parameters of the swaps contracts have

not been published, and the exact number of swap contracts terminated has not been disclosed.

Although, it has been reported that Harvard had at least 19 swaps, as of early 2008, with various

counterparties. Hence, due to the uncertainty surrounding the swap contracts terminated by

Harvard, including the tenor of each, or length of time payments are required to be exchanged

under the swap, it is impossible to determine if Harvard’s net loss would have been less if it held

the swaps to maturity. But given that the 1-year LIBOR3 rate has consistently been at historic

lows, it seems likely that Harvard’s decision to terminate the swaps in fiscal year 2009 was not

impulsive.

2The parties taking opposing sides in a derivative contract are referred to as counterparties.
3The LIBOR rate is a composite rate based on the inter-bank deposit rates offered by banks in London,

and is similar to the Fed Funds rate in the US.

3



C
op
yr
ig
ht

c©
20
13

So
ci
et
y
of
A
ct
ua
ri
es

1

The proceeding discourse has been included to highlight several points. First, there is a

difference between unrealized loss and realized loss. A negative NPV to a counterparty only

becomes a realized loss if the contract is terminated or unwound. Further, there are many

considerations which may compel a counterparty to terminate a swap contract. The immediate

cost, as well as the cost in the near future, to honor the contract must be considered, but

are usually only secondary considerations. The estimation of these costs, of course, depend

on the view of future rate movements. More importantly, collateral requirement must also be

considered. As was the case with Harvard, the compounding effect of the need to post collateral

can create enough liquidity strain to compel even the most optimistic investor to abandon

a deal. Lastly, it is important to note that it is the NPV which often drives the collateral

requirements. This is yet another reason the evolution of swaps NPVs is focus of the current

research.

The city Of Oakland CA:

IR swaps have been popular not only among companies in the private sector, and universities.

One of the largest participants in the IR swap market are states and local governments, or

municipalities, which often issue debt to fund infrastructure and development projects. As with

universities, there are many examples of municipal governments who claim to have lost money

on IR Swaps. The list of cities and municipal governments who have reported large losses on

IR swap deals include the San Francisco Bay Area, San Jose, Washington DC, Baton Rouge,

Boston, Charlotte, Chicago, Detroit, Los Angeles, New Jersey, New York, and Philadelphia,

just to name a few. In fact, some of the most dramatic examples come from the public sector.

A particularly vivid example is that of the city of Oakland California, who has recently taken

on one of the largest investment banks in the world, Goldman Sachs, in response to the souring

of its IR swaps with Goldman. In 1997, during a period of relatively low, but previously rising,

interest rates and also strengthening of the US economy, Oakland City locked in a fixed rate of

5.6% in exchange for a variable rate tied to Libor, to protect itself from rising rates. Just like

in most of the recent cases, the Oakland city swap deal was going well until the financial crises

of 2007 when interest rates dropped to near 0% and stayed there for a record amount of time.

In fact, at the time of this writing, some 5 years later, US interest rates are still near historic

lows. The city of Oakland claims that falling rates are costing the city $4 million annually swap

on the swap deal. Recently, Oakland’s city council voted unanimously to authorize the City

Administrator to negotiate termination of the swap deal with Goldman, adding that Oakland

will cease doing business with Goldman Sachs in the future if Goldman refuses to terminate the

swap. However, Goldman Sachs has refused, and CEO Lloyd Blankfein has made several public

statements reinforcing Goldman’s unwillingness to terminate the swaps, citing their obligation

4
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to shareholders. Unlike Harvard, the Oakland City IR swap deals were not collateralized.

Hence, the story of Oakland illustrates that even the contracted periodic interest payments on

a IR swap, due to unanticipated rate movements, can create enough liquidity strain to compel

a counterparty to terminate a swap.

2. Interest Rate swaps:

We first briefly provide the basics of interest rate swaps, for more detail we refer the reader to

Hull(2011). In general an interest rate swap is a bilateral contract between counterparties who

agree to exchange cash flows based on different indexes at periodic dates in the future. The

cash flows exchanged are usually determined by multiplying the rates by a specified amount of a

commodity called the Notional principal. A plain-vanilla interest rate swap is a particular type

of interest rate swap where fixed payments are exchanged for floating payments usually based

on a Libor interest rate. LIBOR rates are the average of the rates a group of international

banks in London claim it costs to borrow from one other for durations ranging from overnight

to one year. To provide a simple example, consider two firms A and B. Company A borrows

from market at LIBOR + 1% while company B borrows from market at 10%. Company A can

enter into a swap contract with company B in which company A will pay 8% to company B and

will receive LIBOR from company B. After taking into account the swap contract, company A

will be making net payments of 9% while company B will be making net payments of LIBOR +

2%. The swap contract between company A and company B will basically transform company

A payments from float to fixed and company B payments from fixed to float. It is important to

note that company A and company B together will be making the same payments to the market.

Next we discuss the simplistic pricing and valuation of plain-vanilla interest rate swaps (i.e.

we ignore Credit Valuation Adjustment (CVA) and Debit Valuation Adjustments (DVA),

thereby assuming there is no chance of loss due to counterparty default. That is, we assume

both counterparties are default free, or there exist a perfect collateralization, neither of which

hold in the real world.) Since an IR swap consists of two streams of coupons, the value of

a swap can be cast in terms of the prices of two (default-free) bonds with similar coupon

payments between two (default-free) counterparties. To determine the general value of a swap

at initiation consider the case of an n-period, plain-vanilla, interest rate swap where cash-flows

are exchanged at the end of each period, usually every six months. Next consider two bonds,

one with fixed interest payments and one with floating payments. The value of the swap can

be viewed as the difference between the value of the two bonds. We consider the value of the

5
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swap from the perspective of the floating-rate payer. Let Vfix be the value of the fixed bond,

and Vfloat be the of value the floating rate bond, then:

Vfix =
n∑
i=1

C

(1 + ri)i
+

Ffix
(1 + rn)n

and

Vfloat =
n∑
i=1

Ci
(1 + ri)i

+
Ffloat

(1 + rn)n

where Ffix C, and Ffloat Ci, are the Face Amounts and coupons of the fixed rate and floating

rate bonds, respectively, and ri is the interest rate on a zero-coupon bond with maturity i.

Then, the value of a ’receive fixed, pay float’ swap, at time 0, is Vswap = Vfix − Vfloat. To find

the fixed rate for which the swap value will be zero at time zero (i.e. swap rate), we equate the

present value of the stream of floating and fixed cash-flows. In other words, if the swap deal

were to be considered in isolation, neither the fixed payer nor floating payer should gain from

entering the swap. Their desire to enter the swap should be based solely on their particular

needs as well as their projections of future interest rates. To derive this swap rate, we cast

the formula for the value of the above bonds Vfix and Vfloat in common notation of Financial

Mathematics. Again, for the sake of simplicity assume that the swap payments are exchanged

on a semi-annual basis over n years, and also that the notional amount for the swap is $1.

Next, recall that a semi-annual floating-rate note, or bond, provides interest payments at times

i/2, for i = 1, 2, . . . , 2n, equal to the forward rate over the period from (i− 1)/2 to i/2. Denote

this forward rate by F [(i− 1)/2, i/2], then:

F [(i− 1)/2, i/2] =
B[0, (i− 1)/2]

B(0, i/2)
− 1 =

B[0, (i− 1)/2]−B(0, i/2)

B(0, i/2)

where B(0, i) is the price of a zero-coupon bond with face amount $1, maturing in i years in

the future. Also, note that to calculate the present-value of the payment at time i/2 we can use

the above price of a $1, zero-coupon, bond maturing in i/2 years, ie. B(0, i/2), as the discount

factor. Hence, we can write the present-value of the stream of payments from the floating rate

note as:

PVfloat =
2n∑
i=1

F [(i− 1)/2, i/2]B(0, i/2) =
2n∑
i=1

(
B[0, (i− 1)/2]−B(0, i/2)

)

which we recognize as a telescoping series, and hence:

PVfloat = B(0, 0)−B(0, n)

6
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and similarly, PVfixed =
2n∑
i=1

C ·B(0, i/2)

So, to solve for the fixed coupon rate, which makes the present-value of both streams of

payments equal, we solve:

B(0, 0)−B(0, n) = PVfloat = PVfixed =
2n∑
i=1

C ·B(0, i/2) = C ·
2n∑
i=1

B(0, i/2)

for C. Hence, since B(0, 0) = 1, we have:

C =
1−B(0, n)
2n∑
i=1

B(0, i/2)

However, this only describes how the fixed coupon rate is set at initiation, or time 0, so that

the value of the swap is equal to, or close to, zero at time zero. But, now that we see how

to describe the value of an IR swap in terms of the value of two bonds, we can investigate

the value of the swap at times other than initiation. First, recall that floating-rate notes or

floating- rate bonds have a variable coupon rate based on some market reference rate, such as

the LIBOR or the Federal Funds Rate. A notable alternative to use of LIBOR rates as the

reference rate for the floating leg within an IR swap is the use of an overnight lending rate, such

as the Effective Federal Funds rate in the US, which is an average of unsecured overnight lending

rates between financial institutions. A swap whose floating rate is indexed to such an overnight

rate is called an OIS swap. The fixed rate on an OIS swap, of a given tenor, is called the OIS

rate for the given tenor. Unlike the IR swaps discussed so for, cash flows are only exchanged

at maturity of an OIS swap. Specifically, the difference between the OIS rate at inception, for

the given tenor, and the geometric average of the effective federal funds rate over the same

tenor, are exchanged at maturity of the swap. Since the OIS rate is a function of the tenor

of the swap, these rates can be used to form an OIS curve. It should be noted that, post the

financial crises of 2007, many banks have begun using OIS rates to discount both collateralized

and uncollateralized transactions, although this is less often the case for the latter. Due to

their derivation from effective federal fund rates, OIS rates are now largely considered a better

proxy for the risk-free rate. LIBOR rates, on the other hand, being the short-term, unsecured,

borrowing rates of highly-rated banks, reflect an element of credit risk. Also, as discussed below,

the Dodd-Frank act of 2010 mandates that most swaps be centrally cleared, and that uncleared

swaps be collateralized on dealer balance sheets. As a result, it is now commonplace for OTC

derivative contracts to include credit support annexes (CSA’s), which dictate the parameters of

collateral agreements, including the amount and timing of collateral posting, as well the triggers
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which may require increased collateral requirements. Further, since the required frequency of

margining of collateral is often daily, the rate earned on such collateral is an overnight rate,

such as the federal funds rate. This is yet another reason why OIS rates are increasingly viewed

as the correct rate for valuation. However, the use of OIS rates for discounting significantly

complicates the valuation of interest rate derivatives. When OIS discounting is employed, both

OIS and Basis curves4 must be formed simultaneously. Moreover, traditional bootstrapping

curve-building techniques are no longer applicable to this, so called, dual curve problem. Much

more can be said about the impact of OIS discounting on derivative valuation, specifically

regarding the incorporation of the additional components; CVA, DVA, and even FVA5, once

the primary discounting is complete under the no-default assumption. However, the goal of the

current research is to analyze the potential exposure to unanticipated reference-rate changes,

inherent in interest rate swaps, and the complexities of OIS discounting are significant enough

to warrant a dedicated research project. Hence, for the remainder of this paper, we assume the

reference rate is the LIBOR, and that LIBOR rates are used for discounting.

Returning to LIBOR based IR swaps, the value of a floating rate bond at time 0, Vfloat, depends

on the current, time 0, LIBOR yield-curve, or the collection of market anticipated yields (or

rates) of the LIBOR over various time periods in the future, or ”tenors”. Hence, since Vfloat

depends on the time 0 market anticipated yield-curve, and the price of the swap is set so that

Vfloat ∼= Vfix, the price of the swap also depends on the time 0 yield-curve. It may seem obvious,

but for the sake of completeness, note that at time 0 there is only one LIBOR yield curve. As

time passes, however, the LIBOR yield over the same period of time in the future will mostly

likely change. In other words, at time 1, for example, the realized LIBOR rate over the next

1-year in the future can either be higher or lower than the LIBOR rate from 1 year in the future

to 2 years in the future, that was expected 1-year in the past.

Hence, at times in the future it is very likely that the realized LIBOR rates will differ from

what was expected at time 0. When this occurs the realized value of the swap at time points

in the future will also deviate from the swap values expected at time=0. If the swap was

to be terminated at any time in the future, a value equal to NPV (in a world where no

replacement cost or friction is considered) computed on the swap at that time will need to

be exchanged betweent the counterparties. In addition to above consideration on changes

in interest rates, assuming the yield-curve is upward-sloping the expected NPV value of the

receive-fix pay-float swap will be negative for the duration of the swap contract. This is

because a receive fixed swap, in an upward sloping yield curve environment, initially behaves

like receiving a loan from the counterparty which is gradually paid back during the remaining

duration of the swap. Note that NPV of the swap at any point in time only factors in the

4Basis curves define the basis between LIBOR and OIS rates.
5Credit Value Adjustment, Debt Value Adjustment, and Funding Value Adjustment
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remaining payments and hence a negative NPV means a net payment in the future. Also,

in addition to direct gains or losses in the value of a swap position there are also additional

administration fees which are triggered upon termination of a swap position. Further, under

ASC 815 (formely FAS 133), unless an interest rate swap qualifies as a hedge, gains or losses

must be recorded in earnings, and even if a swap is used as a hedge, ASC 815 only allows hedge

accounting if specific prerequisites are satisfied and, moreover, the type of hedge accounting

allowed is dependent on the motivation for entering the swap contract. For example if a

company issues fixed-rate debt and then enters a pay-float receive-fixed swap in order to

replicate the net interest expense of variable-rate debt, then fair-value hedge accounting instead

of cash-flow hedge accounting must be followed. In which case the corresponding gains or

losses of the interest rate swap are posted to earnings, just as they would be for a derivative

which isn’t used for hedging. The investigation of the potential gain or loss upon entering

such a plain-vanilla interest rate swap, due to changes in the interest, rates is the main fo-

cus of this research, which will be presented in section 5, after some more background is covered.

The above description of interest rate swap pricing was predicated on the assumption that

swap prices are set so that the value of the swap at time 0 is fairly priced, or that the

value of the swap at time 0 is 0. However, this zero net present value principle is just a

theoretical construct. In practice, the NPV of most swap contracts are positive for the dealer.

This is due to the bid-ask spread the dealers quote, which represents the difference between

the prices the dealer is willing to pay (purchase), or to receive (sell), respectively, in order

to act as counterparty within a contract. Also incorporated into the quoted spread will

be some consideration of the collateralization terms, creditworthiness of the company, and

potential funding cost for the dealer. One effect of the use of dealers is that swap end-users

are not exposed to each other’s creditworthiness, instead only to the creditworthiness of the

agent. An important consequence of such a dealer-based market, is that the price of swaps

is largely dictated by supply & demand. A direct result of which is that, in addition to

the assumption of Efficient Markets or Arbitrage-free markets, the accurate pricing of the

interest rate risk inherent in these derivatives is implicitly dependent on the assumption that

participants in the market have accurately quantified the exposure produced by these derivatives.

In general, derivative trades can be implemented in several different ways, or in several different

markets. To this point we have described derivative trades within the bilateral OTC market,

where participants directly trade and clear their trades with one another, or with a dealer.

However, derivatives trades can also be implemented through what is called a centralized coun-

terparty(CCP). Trades through a CCP begin as in the bilateral OTC market, but what would

9
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have been a single contract between two parties is essentially broken into two new contracts6, one

between the buyer of the derivative and a ternary counterparty, and one between the seller and

the same ternary counterparty. This ternary counterparty is the CCP. This process is similar to

how trades take place in an exchange-based market, however a CCP may be used in conjunction

with decentralized trades, such as occur in the bilateral OTC market. When such a trade takes

place the mechanism can be described as decentralized trading with centralized clearing. This

procedure has several benefits over the bilateral OTC practice. First, it increases transparency

by making information on prices, trading volume, and counterparty exposure available to the

public. Second, it simplifies the management of counterparty risk and collateral. Thirdly, since

a CCP is theoretically a counterparty to a large number of trades, or potentially even all trades,

in a particular derivative, the CCP can more easily perform multilaterally netting, which also

ameliorates counterparty and operational risks. Another beneficial aspect of the use of CCP’s

is that they essentially diversify credit and market risk by spreading it out among its large

number of counterparties. Lastly, the use of CCP’s may reduce the profiting by market-makers,

via price discrimination among its customers, in the bilateral OTC market, which is sometimes

purported to exist. The discussion of CCP’s is relevant to IR Swaps because the almost 1,000

pages of regulation contained in the Dodd-Frank act78 dictate that most9 vanilla OTC contracts

(including IR swaps) be traded on exchanges and cleared through central counterparties, and

that uncleared swaps be collateralized on dealer balance sheets. One of the motivations for

requiring derivative trades to be through a CCP is the desire to reduce the required capital

held by large banks. In fact, derivative trading through CCP’s began before Dodd-Frank, and

even before the financial crises. One of the first CCP’s for IR swaps was SwapClear10. In 2008,

two more Clearning houses for swaps were created; CME Cleared Swaps, and the International

Derivatives Clearing Group11 However, we do not wish to give the impression that CCP’s are

some sort of silver-bullet for the derivatives market. For almost every benefit CCP’s provide,

there is a corresponding hazard. For one thing, it is important to be cognizant of the fact that

CCP’s cannot eliminate counterparty risk. Rather they simply convert it into other forms of

risk, such as Liquidity and Operational risk. Because of the position the CCP takes within a

derivative trade it assumes no market risk, however, it does bare the full counterparty risk. As

a result, CCP’s will attempt to mitigate this risk by demanding collateral from the end-users

of the derivative contract in the form of a variation and initial margin. Hence, the CCP effec-

tively transforms the counterparty risk to Liquidity risk. Further, since the size of the posted

6This process is called Novation.
7Dodd-Frank was signed into law in July 2010.
8Much of Dodd-Frank had its genesis in the 2009 G-20 Pittsburgh communique.
9There are exemptions for certain end-users.

10SwapClear is a UK-based CCP which was established in September 1999.
11CME Cleared Swaps is associated with the Chicago Mercantile Exchange, and IDCG is linked to

Nasdaq.
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margins only covers the exposure to default up to a certain level, or for a certain percentage

of the scenarios in which default occurs, it is possible that the CCP, and its counterparties,

could be exposed to the moral hazard of a given counterparty. This is so since, if all margins of

the defaulting counterparty are exhausted, the funds of the other counterparties may be used

to absorb the remaining losses. Further, some have argued that asymmetric information, or

expertise, regarding the valuation of complex derivatives may disadvantage CCP’s and lead to

adverse selection, similar to what occurs in the insurance market.

Yet another interesting facet of the market’s influence on IR swap prices involves the LIBOR

rates themselves, or more specifically, the market’s view on future LIBOR rates. The mech-

anism for this influence is the Eurodollar futures market. Eurodollars are deposits made to

banks outside the U.S., yet which are denominated in U.S. dollars. Eurodollar futures are

derivative contracts based on Eurodollars, and which are traded on the Chicago Mercantile Ex-

change(CME). Essentially, Eurodollar futures allow investors to speculate on the future levels

of a 3-month European interbank lending rate index. Hence, similar to interest rate swaps, Eu-

rodollar futures allow the ’locking-in’ of future interest rates. From their introduction in 1981,

through 1996, the index upon which Eurodollar future prices were set was determined by the

CME itself, based on information gathered from banks in London. In 1997, however, the CME

began using the LIBOR as the index for Euro-dollar futures12. Hence, since 1997, Eurodollar

future prices have been determined by the market’s expectation of the 3-month LIBOR rate

at predetermined settlement dates in the future. One of the motivations for the change was

the belief that basing Euro-dollar futures on LIBOR rates would facilitate the hedging of IR

swaps, and hence bolster the then burgeoning IR swap market as well as increase the trading

volume in Eurodollars. The move to a LIBOR-based Eurodollar futures market also, at least

potentially, impacts IR swap pricing. Since Eurodollar futures contracts with expiration, or

settlement dates, up to 10 years in the future are traded, a ’market-implied’ LIBOR yield curve

can be educed. Hence, if the IR swap pricing were grossly out of line with this implied LIBOR

curve, an arbitrage opportunity would exist. However, for the same reasons given in the previous

paragraph, this ’market-consistent’ force, or arbitrage relationship, between Eurodollar and IR

swap prices will only help move IR swap prices toward a ’more fundamentally correct’ level if

participants in the Eurodollar futures market have better information regarding future LIBOR

rates than those in the IR swap market. Conversely, if participants in the Eurodollar futures

market had systematically less perfect information regarding future LIBOR rates than those in

the IR swap market, this could potentially have a negative effect on participants in the IR swap

12Marcy Engel, lawyer for Salomon Brothers Inc. at the time, expressed concern that since the banks

in London which set the lending rates are also able to take positions in the eurodollar market, these

banks may be tempted to attempt to manipulate the LIBOR rate. It has been reported that since 2008,

19 banks have been investigated for LIBOR fixing, and in 2012, London-based Barclays plc. admitted

that employees attempted to manipulate LIBOR rates, and paid a $450 million settlement.
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market, or at least to one of the counterparties to a given IR swap deal.

A situation in which market forces may have less of an influence on IR swap prices is when

investment banks market IR swap deals directly to insurance companies. However, regardless,

it is important that insurance companies perform their own valuation of swap deals. It is

this analysis of the interest rate risk exposure for IR swaps which is the main focus of this paper.

3. Interest Rate Models:

As stated above, the goal of the current research is to analyze the potential P&L exposure

as well as potential counterparty exposure of interest-rate swaps due to the realization of

interest-rates which may differ from the markets expectation upon inception of the swap

contract. Of course, the main driver of the interest rate risk of an IR swap is the uncertainty

surrounding the level of future interest rates, and many techniques exists to forecast the level

of future interest rates. Ideally, the goal when forecasting future interest rates is to correctly,

and consistently, anticipate how interest rates will evolve in the future. However, the vast array

of continually evolving and changing economic, market, regulatory, etc., factors, which impact

the level of future interest rates, imbue their future value with the characteristics of a random

process. Hence, if one takes this view, the amount of information available at the current

time regarding the level of future interest rates is limited to an understanding of distributional

qualities. In this case it is not surprising that the techniques of modern mathematical

probability and statistics are often utilized to model future rates. A popular, forward-looking,

application of this approach is to model the future path of interest-rates as a stochastic

process, which evolves according to an Ornstein-Uhlenbeck diffusion process, and is calibrated

to produce prices which match the current market prices of liquid securities such as interest

rate caps or swaptions. An alternative, backwards-looking version of this statistical modeling

approach, is accomplished by calibrating the parameters of a given model using a subjectively

chosen subset of historical market information. As will be discussed further below, this retro-

spective approach is implicity predicated on the assumption that the past is likely to repeat itself.

The development of models embracing this mathematical modeling approach has been ongoing

since the mid-80’s. Originally these models were developed to price option-embedded bonds.

Unlike their decedents, these early models were not able to produce prices of non-callable

bonds which were consistent with the market, and hence when used for pricing, allowed for

arbitrage. In other words, these models where not arbitrage-free. These early models assumed

the instantaneous forward rates followed a Stochastic Differential Equation (SDE) similar to

those of arbitrage-free models, which will be discussed in more more detail below. However, the
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reason these early models could not calibrate to the current yield-curve, or in other words, were

unable to produce the entire current yield curve on an expected basis, is that the coefficients

of the model, most importantly the drift term, θ, were assumed to be constant. For example,

one of the first such models was the Vasicek model, for which the short-rate satisfies the

equation: drt = κ(θ − rt)dt + σdZt, where Zt is a Brownian motion. Incidentally, note that

although these models are unable to match the entire current yield curve on an expected basis,

they are usually able to match the current rates for a few select maturities. To remedy this

situation, Arbitrage-free models were subsequently developed. These models are able to match

the entire yield curve, on an expected basis, by replacing the constant parameters, specifically

the drift parameter θt, in the early models with parameters which are a functions of time.

Also, Arbitrage-free models utilize the current yield-curve, in the calibration process, in order

to facilitate the parameter θt being fitted so that the model can match the current yield-curve.

For this reason, these models are often described as taking the initial yield-curve as an input.

When an Arbitrage-free model is calibrated using the current market prices of available securi-

ties, by definition, implicit in the solution is a risk-neutral measure, with respect to which the

short-rate is a solution to the stochastic differential equation. Technically, any set of martin-

gale probabilities such that you can replicate all available market prices of securities in the given

market/world is a risk-neutral measure (or a set of risk-neutral probabilities) with respect to that

particular market/world of prices. Said another way, a risk-neutral measure is any martingale

measure on the given world of securities. The stipulation that a risk-neutral measure is defined

relative to a particular world of securities is an important one, and will be discussed further

below. In order to explain why the existence of a risk-neutral measure is implicit in the use of

arbitrage-free models calibrated using the current market prices, we first provide a brief overview

of the concept of risk-neutral probabilities as commonly presented in elementary mathematical

finance texts. Most coverage of risk-neutral probabilities, starts off by introducing Arrow secu-

rities. Arrow securities are hypothetical securities that pay $1 if a given economic, or market,

state arises at a specified time in the future, and pay 0 otherwise. Further, the price of the

security at time=0, relative to the $1 pay-off in the future, provides a measure of the market’s

view of the likelihood of the corresponding state arising. One motivation for introducing Arrow

securities is that if it is assumed that the market is what’s called complete, then the pay-off of

any security in the market can be replicated with a linear combination of the security pay-off’s

in each state, weighted by the market prices of the Arrow securities corresponding to the same

state. An important consequence is that a unique arbitrage-free price for every security in the

market can be determined from such a linear combination of Arrow securities. This is so since

the set of market(economic) states corresponding to, or triggering, the pay-off’s from the set

of Arrow securities are assumed to be mutually exclusive and exhaustive, so that by holding

all Arrow securities a $1 pay-off is assured. Hence, if the market price of a given security is

13



C
op
yr
ig
ht

c©
20
13

So
ci
et
y
of
A
ct
ua
ri
es

1

other than the price indicated by the linear combinations of security pay-off’s weighted by the

Arrow securities prices, arbitrage will exist. It is also significant that the heretofore referred to

linear combination is weighted by the market prices of the Arrow securities. Since probabilities

are usually used for weighting it make sense that these Arrow security prices can be viewed as

probabilities. In fact, these Arrow security prices are exactly risk-neutral probabilities, if the

time-value of money is ignored. If the time-value of money, however, is not ignored, or in other

words, if there exists a risk-free bank account, then the prices of securities can be represented by

the exact same linear combination, just with appropriate discounting. If the risk-free interest

rate over one period is represented by r, then in this case by holding the whole set of Arrow

securities with pay-off’s occurring one time period later, the present-value of the the cumulative

pay-off is no longer guaranteed to be $1, but rather 1
1+r . In other words, the sum of all the time

0 Arrow security prices is 1
1+r . If we still want to use these prices as probabilities, then we have

to adjust them so that they add to 1. This can be accomplished simply by grossing-up each

individual price by (1 + r). So if ai is the Arrow security price, a.k.a risk-neutral probability, in

the 0 risk-free rate situation, then qi = (1 + r) · ai will be the corresponding risk-neutral prob-

ability when the risk-free interest rate is r. If we assume a simple security which only makes

payments one time period later, and Xi is the time 1 pay-off of the given security, if state i is

realized, then the price of the security at time 0, X0, is:

X0 =
1

1 + r

∑
qi ·Xi

Returning to the concept of complete markets, if the set of Arrow securities is not rich enough

to replicate all security prices, then the set of risk-neutral probabilities which can be used to find

the arbitrage-free price of any security are not unique, rather a range of probabilities can serve

as risk-neutral. For example, imagine there are only 5 possible states of the market at time 1,

but that it’s not possible to determine what the price of the Arrow securities corresponding to

states 4 and 5 are because, for example, there may not be enough observable securities in the

market to make this inference. Then a security which pays $1 if states 4 or 5 arise, will have

an arbitrage-free price of 1− a1 − a2 − a3. Further, if another security pays $1 if states 1, 2, or

5 arise, then its price will be greater than a1 + a2, but less than 1 − a3. More specifically, any

combination of prices a4 and a5 such that: a1 + a2 < a4 + a5 < 1− a3 can serve as risk-neutral

probabilities.

This is a good place to pause and emphasize that the presentation of risk-neutral probabilities

so far has actually been developed in an idealistic framework. We started from the assumption

that we could observe the market prices today of all Arrow securities, and hence the unique set

of risk-neutral probabilities. However, one may correctly ask one’s self, if the current market

prices of all Arrow securities are known, and the price of any security in the market can be

determined from a linear combination of the Arrow security prices, then what is the need for
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risk-neutral probabilities in the first place? Indeed, this is a prescient observation. In order to

gain any advantage from the use of risk-neutral probabilities, securities whose pay-off’s cannot

be replicated with the known set of Arrow securities must be priced, in which case as we saw

above, there will be more than one set of probabilities which qualify as risk-neutral. However,

even though the set of risk-neutral probabilities available for pricing a given world of securities

may not be unique, it can be shown that the expected price, as measured from time 0, of any

security in the given world, under any set of risk-neutral probabilities, will obey an important

mathematical property as it moves through time, from time 0 to expiration. Another way to

say this is; the expectation, as measured from time 0, of our expectations of the price at future

times obeys an important mathematical property. More specifically, using the above reasoning,

if X is the pay-off of the security at time n, and Pt is the security price at time t, then using

the same reasoning as above, we have:

Pt =
1

(1 + r)n−t
EQt (X)

where EQt (·) denotes the expectation at time t under a risk-neutral measure. Then using

the rules for conditional expectations, specifically the Tower Property, which says that:

E[E(X | Y ) | Z] = E(X | Z), if Z is a function of Y , we have that: (see appendix for details)

EQ0 (Pt) = EQ0

( 1

(1 + r)n−t
EQt (X)

)
=

1

(1 + r)n−t
EQ0

(
EQt (X)

)
=

1

(1 + r)n−t
EQ0 (X)

Now recalling that: EQ0 (P0) =
1

(1 + r)n
EQ0 (X), we can re-write the above as:

EQ0 (Pt) =
1

(1 + r)n−t
EQ0 (X) = (1 + r)t

[ 1

(1 + r)n
EQ0 (X)

]
= (1 + r)t · EQ0 (P0).

In other words, we see that the expected price grows at the risk-free rate through time, where

each expectation is calculated as of the same point in time. Recalling the definition of risk-

neutral probabilities as grossed-up, or compounded, state prices ie. qi(t) = (1 + r)t · ai, for each

state i, it makes sense that the expected value (over all states) at time t > 0 is also inflated

by a factor of (1 + r)t. If Pt is considered a stochastic process, which is simply a sequence of

random variables indexed by time, then this pattern of growth through time can be described

as a drift in the process. In this case, we can ”correct” for the drift in the process by simply

dividing by the growth at each point in time. Assuming the price of the security is known at

time 0, we have:

EQ0 (
Pt

(1 + r)t
) =

1

(1 + r)t
EQ0 (Pt) = P0 =

P0

(1 + r)0
for all t > 0.

Hence, letting St = Pt
(1+r)t , we have that EQ0 (St) = S0 for all t > 0. This implies
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that the stochastic process St has the characteristics of what’s called a Martingale under the

risk-neutral probabilities, and the risk-neutral probabilities are called Martingale probabilities

for St (technically E(|St|) < ∞ is also required). In fact, as stated above, this criteria can be

used to define risk-neutral probabilities: Any set of probabilities under which the stochastic

process Pt is a Martingale qualifies as being risk-neutral. Again, it is important to remember

that there may be many such sets of risk-neutral probabilities for a given stochastic process,

and also to remember the connection between the characteristic of a security price being

arbitrage-free and the existence of a risk-neutral measure. The price of a security, within a

given world of securities, is Arbitrage-free if it falls within the range of prices calculated from

all extant risk-neutral models for the given world of securities.

Since the analysis in this paper is focused on IR swaps, and is based on forward yield-curves

generated from interest rate models, we first stress that the above risk-neutral framework can

be applied to any financial instruments, including bonds. In the case of bonds, it is the interest-

rates, which are used for discounting, that are uncertain, not necessarily the pay-off’s, or coupons

and face value. So, in this case, given the interest rate level at time t, a set of risk-neutral

probabilities is assigned to the potential interest rate levels at time t + 1. This is done for all

times t within the range of analysis, and results in a sequence of possible interest rate paths,

through time, with associated probability for each path. The associated probability is found by

sequentially multiplying the risk-neutral probabilities for each unit step along the given interest

rate path, through time. Then, for each interest rate path, or along each interest rate path, the

present value of the bond can be calculated. This gives the present value of the bond assuming

the given path of rates is realized. Finally, one can calculate the overall price of the bond as the

expected present value over the set of future interest rate paths, using the associated probabilities.

Next, we reinforce that the concept of Arbitrage-free deals with the relationship between prices,

not rates. So, even though prices can be inferred from the rates generated by the interest rate

models used in this paper, via zero-coupon bond prices, there is a degree of separation between

the actual output of said models and the concept of Arbitrage-free, and hence also the concept

of risk-neutral. Also, as alluded to above, a risk-neutral measure is defined with respect to

a given world of securities, or security prices. This world of securities includes the securities

used to calibrate the given model and also the securities being priced. Hence, much like the

concept of Independence of events in elementary probability theory, the qualification of a set of

probabilities as being risk-neutral is a joint characteristic of both the measure(probabilities) and

the space(set of securities) on which the measure is defined. In particular, while a measure may

be considered risk-neutral with respect to a given world of securities, it may no longer satisfy

the requirements of a risk-neutral measure when applied to a larger universe of securities which

contains assets classes whose price information is outside the original world of securities. This

last point is especially germane to the above interest-rate models, as there are necessarily only
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a finite number of market securities with respect to which a model can be calibrated. Hence,

such models can only be considered risk-neutral for the purposes of pricing a subset, possibly

a small subset, of all securities. Moreover, another consideration which is particularly relevant

to arbitrage-free models used for interest-rate modeling is that market price information is only

available to calibrate solutions at a small set of durations. Hence, for all durations between

these few durations, there is no price information available for calibration, and hence this is

an analogous situation to the one described above, where price information for some securities

are outside the world of securities used to calibrate the model. However, the SDE essentially

constrains the short-rate solution to be such that there is no arbitrage, even at durations between

those for which there is market information. Of course, this will only be the case if the short-rate

actually does evolve according to the SDE, which is unlikely. After all, it must be remembered

that a model is only a model.

Within industry and academics, especially the latter, it is often admonished that pricing models

should rely on risk-neutral measures (a.k.a. risk-neutral probabilities), whereas models used for

risk management are often said to not require, and some even claim should not use, risk-neutral

probabilities. Rather it is claimed that models used for risk management purposes should rely

on, what is often referred to as the real-world measure. However, the real-world measure can

be considered a theoretical concept, in the sense that knowing the real-world measure would be

tantamount to knowing the real chances, ahead of time, that financial security prices will be at

given levels in the future. This means that models ostensibly based on the real-world measure

can only, at best, be based on an approximation to, or estimate of, the real-world measure, or

real probabilities. In practice the real-world measure is often estimated by using a subjectively

chosen subset of historical market information to calibrate model parameters. Again, when

historical information is used in this way, it is important to realize that the assumption is that

the past is likely to repeat itself. Furthermore, estimation of the real-world measure usually

depends on the subjective choices regarding which historical information is used, as well as over

which period this information is gathered, and hence the results of such models are dependent on

these subjective choices. Also from recent history we know for certain that the assumption that

the past will repeat itself is a tenuous one, at best. Events outside of recent past experience,

in fact, can and most likely will eventually occur. Instead of relying on subjective views

and historical data, risk-neutral models use current market-implied information to calibrate

model parameters and, as a result, also adjust automatically in reaction to changing market

conditions. However, it should be pointed out that, in practice, much analysis and attention to

detail, goes into the selection of historical data and the calibration process, when employing

”the” real-world measure. Given this, as well as the practical difficulties in implementing, and

interpreting, models based on a risk-neutral measure, some of which are outlined above, the use

of historical data to calibrate models is often reasonable, especially if the purpose and scope of

the models are amenable to such calibration. In fact, the analysis performed in this research
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uses historical data to calibrate some of the parameters.

We now investigate the particular arbitrage-free interest rate models relevant to the current

work. Specifically the Black-Karasinski model and the more general Hull-White model. Using

notation similar to that in the previous section, but allowing the contracted time of the swap,

t0, to be other than zero, the forward rate from t1 to t2, at contracted at time t0, is:

F (t0, t1, t2) =
P (t0, t1)− P (t0, t2)

(t2 − t1)P (t0, t2)

where t0 ≤ t1 < t2, and where P (t0, t1) is the price of a zero-coupon bond maturing at time

t1, and valued at time t0. Similarly, the (instantaneous) Short-Rate at time t0 is:

f(t0, t0) = lim
t→t0
−∂LogP (t0, t)

∂t

It is possible to model the evolution of either of the above rates as a stochastic process whose

evolution through time is governed by a stochastic differential equation similar to that of the

Black-Karasinski model, which is described below. The first model of the evolution of Short

rates was the Vasicek model (1977), followed by many others. Short rate models are often

preferred to forward rate models because they are more tractable, and easier to understand,

but are more limited regarding the volatility structures which may be used. Since forward-rate

models are not used in this paper, they will not be discussed further, and the interested reader is

referred to Hull(2011). However, as mentioned above, the Heath, Jarrow and Morton forward-

rate models, specifically the LIBOR market model are very promising, though they have their

own short-comings, and are harder to implement. Some of the most popular short-rate models,

to date, are the Hull-White, and the Black- Karasinski models. At the time of this writing,

there does not appear to be extensive documentation on the implementation and calibration of

the Black-Karasinski model, hence we first discuss this model, and in the next section describe

how it is usually implemented in practice, by discretizing and then evaluating the model using

a tree structure.

As already mentioned, short rate models specify the behavior of the short-rate through time,

which we previously denoted by f(t0, t0). To make the derivation, which follows, more clear

we simplify notation by simply referring to the short-rate as rt, and sometimes abuse notation

by simply referring to the short-rate as r. The Black-Karasinski model is a specific case of the

generalized Hull-White model in which the function of the short-rate f(r) = ln(r) is assumed

to follow the following specific form of the Ornstein-Uhlenbeck diffusion process:

df(r) = [θ(t)− α(t)f(r)]dt + σ(t)dZt
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where Zt is a Standard Brownian Motion, and α(t), σ(t) and θ(t) are non-random parameters,

which are possibly functions of t. For background on Brownian motions the reader is referred

to Karatzas & Shreve(1997). Technically the Black-Karasinski model is considered a single

factor model since the short-term interest rate is assumed to be the only source of uncertainty.

The solution to the above SDE, which specifies the Black-Karasinski model, is: (see appendix

for details)

rt = exp
[

ln(rs)e
−(J(t)−J(s)) +

∫ t

s
e−(J(t)−J(τ))θ(τ)dτ +

∫ t

s
σ(t)e−(J(t)−J(τ))dZτ

]

for any s < t, and where: J(t) =

∫ t

0
α(τ)dτ .

In the above SDE, θ(t) is the parameter which imbues the model with its initial (at time 0)

term structure matching characteristic, α(t) is a mean-reversion parameter, which represents

the speed at which ln(r) goes to the asymptotic mean, θ, and σ(t) represents the instantaneous

volatility of the spot rates. α(t) and σ(t), taken together, allow the model to be calibrated to

current market prices. More specifically, they allow the volatility (term) structure of the model

at time 0 to match the market’s implied volatility structure. However, by allowing α(t) and

σ(t) to be functions of time, the model’s implied future volatility structure can deviate from the

time 0 volatility structure. This is often referred to as the model’s implied volatility structure

not having a stationary distribution through time. Hence, there is a trade-off between matching

the volatility term-structure at time 0, and having a non-stationary volatility structure. For

this reason, as well as the increased tractability of the model under the assumption of constant

parameters, often in practice the parameters α(t), and σ(t) are held constant. Again, when this

adjustment is made to the model, the volatility structure throughout time remains constant,

but the consistency with market prices can be significantly effected.

We now turn our attention from the Black-Karasinski model to the model from which the Black-

Karasinski is derived, ie. the Hull-White model. The Hull-White model follows the same SDE,

namely:

df(r) = [θ(t)− α(t)f(r)]dt + σ(t)dZt

but instead of using f(r) = ln(r), we simply use f(r) = r. Hence, in this case, the SDE becomes:

drt = [θ(t)− α(t)rt]dt + σ(t)dZt

Then, exactly as for the Black-Karasinski model, we have:
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rt = rse
−(J(t)−J(s)) +

∫ t

s
e−(J(t)−J(τ))θ(τ)dτ +

∫ t

s
σ(t)e−(J(t)−J(τ))dZτ

for any s < t, and again, where: J(t) =

∫ t

0
α(τ)dτ . Hence, we can see that the Black-Karasinski

model is related to the Hull-White model, only ln(rt) is governed by the SDE in the former,

and just rt in the latter.

Now, if we let the coefficients α(t) and σ(t) be constant, and put u = 0, we have:

rt = r0e
−αt +

∫ t

0
e−α(t−τ)θ(τ)dτ + σ

∫ t

0
e−α(t−τ)dZτ

In general, the price at time 0 of a zero-coupon bond with maturity T is:

P (0, T ) = EQ
(

exp
[
−
∫ T

0
rs ds

])

Hence, we examine X(t) =

∫ T

0
rs ds

It can be shown that:(see appendix)

E
(
X(t)

)
=

r0
α

(1− e−αt) +
1

α

∫ τ=t

τ=0
θ(τ)

(
1− e−α·(t−τ)

)
dτ

and:

V ar
(
X(t)

)
=

σ2

α2
t +

σ2

2α3

(
4e−αt − e−2αt − 3

)
.

Further, it can be shown that:(see appendix) θ(t) = αf(0, t) +
d

dt
f(0, t) +

σ2

2α

(
1− e−2αt

)
.

Hence, by combining the above formula for rt with that for θ(t), we see that the Hull-White

model has a closed-form solution.

The existence of a closed-form analytical solution is a very attractive feature of the Hull-White

model, however one draw-back of this model is that it is possible to have negative interest rates.

This draw-back was one of the main motivations for the creation of the Black-Karasinsk model

(1991). In general the Black-Karasinsk model is considered a more accurate model of spot rates,
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however this increased accuracy comes at a cost. Specifically, unlike the Hull-White model, no

closed-form analytic solution exists for the Black-Karasinski model, and hence implementation

is much more difficult.

In this paper we use the Black-Karasinski model to model the evolution of the short-rate

through time. As mentioned above, the Black-Karasinski model is a member of the class of

Arbitrage-free models. As described below, the Black-Karasinski model has three parameters;

α(t), σ(t) and θ(t), and when such models are described as arbitrage-free it is assumed that

α(t), and σ(t) are calibrated using market information on interest-rate swaptions or bond

options at specific durations. However, it is possible to use historical information to calibrate

α(t), and σ(t) within an arbitrage-free model. In this case the prices derived from the model

are not arbitrage-free, in the strict sense. However, it can be argued that, when this type of

calibration is performed, the real-world measure is employed. Hence the short-rate process,

which is a solution to the SDE, shares some of the attributes of using arbitrage-free models,

as well as the attributes associated with using the real-world measure. In order to perform

the analysis in the current research, we have employed this hybrid approach. This decision

has been made for several reasons. First, as already mentioned, arbitrage-free models produce

scenarios which, on average, match the current term structure. More importantly, the goal of

the current research is to analyze the exposure to counterparties of interest-rate swaps under

different yield-curve environments, and also under different volatility assumptions. Hence, it

is believed that it will be informative to compare results based on the same yield-curve, yet

different volatilities, as well as results based on the same volatility but different yield-curve

shapes.

4. Implementation of Interest Rate Models:

In general stochastic interest-rate models, and the Hull-White model and Black-Karasinski

models in particular, are often implemented using a trinomial tree. As mentioned above, the

purpose of the trinomial-tree structure is to facilitate solving the SDE by discretizing it. Also,

the tree-structure allows the model to be fit to the initial term structure, which is the defining

characteristic of arbitrage-free models. This is accomplished by strategically distorting the tree,

as described below. First we recall the SDE that we wish to solve:

df(r) = [θ(t)− α(t)f(r)]dt + σ(t)dZt

Before building the actual tree for f(r), we set the current time to 0, and define a deterministic
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function g, which satisfies:

dg = [θ(t)− α(t)g(t)]dt

Next, we define a new variable: x(r, t) = f(t)−g(t), which now satisfies the simplified diffusion

process: dx = − α(t)xdt + σ(t)dz

The use of the function g(t) is the key to constraining the solution of the SDE so that it matchs

the initial term structure, or current yield curve, on an expected basis.

Next, g(0) is chosen so that the initial value x(r, 0) is zero. This actually causes the expected

value of x(r, t) to be 0 at all future times, since x(r, t) is mean reverting to 0.

Now, instead of building the tree for f(r) directly, which is the object of interest, rather we

build a tree for x(r, t), the details of which follow:

In general tree-structures have several parameters; the spacing of the nodes WRT time, the

spacing of the nodes WRT interest-rates, and the specific branching process. With regards to

the node placement in the time dimension, nodes must be placed at all cash flow payment dates.

Once this is accomplished, extra nodes can be added later to increase accuracy. Regarding the

spacing of the notes in the interest-rate dimension, at a given time step ti, nodes are placed

at ±∆xi,±2∆xi, . . . ,±mi∆xi, where mi are the indices of the highest and lowest nodes, in the

interest-rate dimension, at time ti.

A common level of ∆xi that is suggested is: ∆xi = σ(ti−1)
√

3(ti − ti−1)

Based on trial and error, it has been anecdotally determined that the above level of ∆xi will

allow enough spacing in the interest-rate dimension to represent the volatility of x(r, ti).

Next we specify the probabilities of moving from a given node at time step i to each of the 3

possible nodes at time i+ 1. If we are at node j∆xi, at time i, then let:

(k−1)∆xi+1, k∆xi+1 and (k+1)∆xi+1, be the three possible nodes to which x(r, ti) transitions

at time i+ 1.

Then, from the form of the simplified diffusion process, denote the expected mean change in

x(r, t) over (ti, ti+1) by E(dx) = M , and denote the second moment of the mean change by

E(dx2) = V + M2.

Then letting pd, pm and pu be the probabilities of transitioning to (k − 1)∆xi+1, k∆xi+1 and

(k + 1)∆xi+1, respectively, and equating the mean, and variance of x(r, t) over (ti, ti+1) with

the above, we get:

j∆xi + M = k∆xi+1 + (pu − pd)∆xi+1 , and:
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V + (j∆xi + M)2 = k2∆x2i+1 + 2k(pu − pd)∆x2i+1 + (pu + pd)∆x
2
i+1

Solving these for pd, pm and pu, we get:

pu =
V

2∆x2i+1

+
α2 + α

2

pd =
V

2∆x2i+1

+
α2 − α

2

pm = 1 − V

∆x2i+1

− α2

Where α =
j∆xi + M − k∆xi+1

∆xi+1
is the distance from the expected value of x(r, t) to the

central node at time i+ 1. Furthermore, it has been shown that, the above probabilities are

assured to be positive if: k = round
(j∆xi + M

∆xi+1

)

The above determines the branches and transition probabilities for all nodes. Also the highest

and lowest nodes at each future time step, ±mi can be iteratively determined by starting from

the node m0 = 0, at time 0, and using the above formulas for k, and pd, pm, and pu to

determine ±m1, then ±m2, and so on.

At this point, the base tree for x(r, t) has been constructed. The last step in the tree-construction

process is to adjust the tree for x(r, t) to arrive at the tree for f(r).

From the differential equation for the function g(t) (below), it can be seen that g(t) is a function

of θ(t), and recall θ(t) is used to adjust the model so that the solution matches the initial

term-structure on an expected basis. Hence, it can be seen how using g(t) to facilitate initial

term-structure matching makes sense.

dg = [θ(t)− α(t)g(t)]dt

To arrive at the tree for f(r), at each node of the trinomial tree for x(r, t), the value of g(t) will

be added to all x(r, t) values to arrive at the f(rt) values.

The main relation between f(r), x(r, t), and g(t) is: f(r) = x(r, t) + g(t).
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Now, letting rij denote the interest rate at node (i , j), using the above, we have:

rij = f−1(xij + g(ti))

The actual value of g(t), for each t, is determined so that the modeled prices of discount bonds of

all maturities are consistent with the corresponding prices based upon the initial term structure

observed in the market. To accomplish this, the modeled price Pi+1, as measured from node

(0, 0), of a discount bond paying $1 at every node at time i + 1, is equated to the price of the

corresponding discount bond using the current term structure, PM (0, ti+1).

i.e. we set: Pi+1 = PM (0, ti+1), and solve for g(ti+1), where:

Pi+1 =
∑
j

Qij exp
[
− f−1(xij + g(ti))(ti+1 − ti)

]
and:

PM (0, ti+1) = exp [−R(0, ti+1)ti+1].

where Qij are called the Arrow-Debreu prices by Hull & White, and represent the value at (0, 0)

of a security that pays $1 at node (i, j) and zero otherwise, and R(0, ti+1) is the market observed

continuously compound yeild at time 0 on a zero-coupon bond with face value $1 that matures

at ti+1.

For the Black-Karasinski model:

f−1(xij + g(ti)) = exp (xij + g(ti))

and the equation that needs to be solved for g(ti+1) becomes:

Pi+1 =
∑
j

Qij exp
[
− exp (xij + g(ti))(ti+1 − ti)

]
Unfortunately, unlike the Hull-White model, the above equation must be solved using numerical

procedures, such as Newton-Raphson’s method. Also, to further complicate things, in order to

compute the g(ti+1)’s, the Qij ’s need to be solved for first. However, an iterative procedure can

once again be used. The fact that Q00 = 1 can be to compute g(t0), and then this can be used

to find the Qij ’s for all j, at t = 1, using the formula for Pi+1. Then, the Qij ’s for all j, at t = 1,

can be used to find g(t1), and so on.

This completes the construction of an interest-rate tree which allows the matching of the initial

yield-curve.

24



C
op
yr
ig
ht

c©
20
13

So
ci
et
y
of
A
ct
ua
ri
es

1

5. Exposure analysis:

As stated above, the goal of the current research is to analyze the potential P&L exposure,

as well as the potential counterparty exposure, of interest-rate swaps due to the realization of

interest-rates which differ from the markets expectation of rates, upon inception of the swap

contract. In this section, we perform this analysis under three different yield-curve shapes;

upward, inverted, and humped, and also under different volatility assumptions. For each of the

six combinations of initial yield-curve shape and volatility, we use the Black-Karasinski model

to generate 10,000 forward yield-curves scenarios. Then, as described below, we use these 10,000

simulated forward yield-curves to calculate the trajectories of various statistics, based on the

Net Present value of remaining coupons payments.

Before discussing the details of the calculation of these statistics, we describe the implementation

of the Black-Karasinski model used to generate the forward yield-curve scenarios. Recalling the

SDE which governs the movement of the short-rate under the Black-Karasinski model, there are

3 parameters which must be estimated in order to implement the Black-Karasinski model; α, σ,

and θ(t):

d ln(r) = [θ(t)− α ln(r)]dt + σdZt

We estimate the mean reversion parameter, α, from historical data on interest rates. Since we

are modelling the movement of 1-year rates, we use yearly movements of this rate, starting from

the end of every month in 1990 up to 2011. The first-order auto-correlation of ln(rt) is used as

our estimate of 1 − α. To understand the reasoning behind this, we consider the discrete time

version of Black-Karasinski model equation:

ln(rt+1)− ln(rt) = θ(t)− α ln(rt) + εt+1

Or:

ln(rt+1) = (1− α) ln(rt) + θ(t) + εt+1

Where εt is drawn from a normal distribution.

An ordinary least-squares estimate of the coefficient (1 − α), in the above equation, represents

the correlation between ln(rt) and ln(rt+1), or the so called first-order auto-correlation of the

time-series ln(rt). Below is a table listing the first-order auto-correlation of ln(rt), or rho, for

month ends from 1990-2010.

Depending on the starting month, the historical yearly estimate of α, over the subsequent 20 year
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period, ranges between 0.18 to 0.23. In the following analysis, we have chosen to use α = 0.22,

throughout.

For the volatility parameter, σ, we use three values 0.2, 0.35, and 0.5, under each initial yield-

curve. In most modeling situations, one would choose the value of σ to match observed swaption

prices in the market, or alternatively, use an estimate based on historical data. However, we

wish to make the analysis under each initial yield-curve shape comparable, and using the market

implied volatility, by matching observed swaption prices, would likely lead to different values

of σ under each of the different yield-curve shapes, and hence cloud the interpretation of the

results.

Regarding the θ(t) parameter, we calibrate the Black Karasinski model such that expected

prices of zero swaps match the zero swap prices observed at time 0, and as mentioned above, we

consider three different yield curve shapes, which are most commonly observed.

The following simulations and calculations correspond to a 30-year receiver swap, with notional

value of $10,000,000. Further, the NPV calculation at each time, t, considers only the remaining

coupon payments. More specifically, the NPV at time t is defined as:

NPVt =
∑
i>t

C

(1 + ft,i)i−t
−
∑
i>t

Fi
(1 + ft,i)i−t

where C is the fixed coupon payment, and Fi is the floating coupon payment, and ft,i is the

forward-rate over the period (t, i).

Using this definition of NPVt, for each level of sigma, and each initial yield-curve shape, we calcu-

late the trajectory of the following statistics, over the term of the each swap. In the table below,

we use the notation NPV
(i)
t to denote the value of the NPVt on the ith out of 10, 000 simulations.

Abbreviation Name of Statistic Value of statistic at time =t

ENPV Expected Net Present Value Based on forward curve at time zero

DENPV Derived Expected Net Present Value Average
(
NPV

(i)
t

)
over all simulations i.

ELE Expected Loss Exposure Average
(
NPV

(i)
t

)
over i s.t. NPV

(i)
t < 0

PLE Potential Loss Exposure 0.5th %ile of ordered NPV
(i)
t ’s, over all i

EGE Expected Gain Exposure Average
(
NPV

(i)
t

)
over i s.t. NPV

(i)
t > 0

PGE Potential Gain Exposure 99.5th %ile of ordered NPV
(i)
t ’s, over all i(

VaR(99.5) of NPV
(i)
t values, over i

)
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Displayed below are three sets of graphs. Each set of graphs corresponds to one of the three

common initial yield-curve shapes; upward-sloping, inverted, or humped-shaped. Each set of

graphs consist of:

1. One graph of the initial yield-curve.

2. Three graphs of 10,000 simulated forward yield-curves, one for each assumed value of σ.

3. Three graphs of the trajectories of the aforementioned statistics, one for each assumed

value of σ.

In all graphs, the x-axis denotes time while the y-axis denotes interest rate levels, or the

dollar-value NPV of the swap, depending on the graph. The graphs on the left are the forward

yield-curves generated by the Black-Karasinski model, based on the corresponding initial yeild

curve. Hence, the y-axis is the level of rates, in the graphs on the left. The graphs on the right

depict the trajectory of the statistics based on NPVt, and hence the y-axis is in 1 million dol-

lar units. Note, the plotted NPV’s are forward NPV’s on the swap, and are not in today’s dollar.

For the upward-sloping yield-curve case, we used the following initial yield-curve:

which resulted in the following simulations:
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Sigma =0.50
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For the hump-shaped curve case, we used the following for of the initial yield-curve:

which resulted in the following simulations:

Sigma = 0.20

Sigma = 0.35
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Sigma = 0.50

And for the inverted curve case, we used the following for of the initial yield-curve:

which resulted in the following simulations:

Sigma = 0.20
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Sigma = 0.35

Sigma = 0.50

Positive NPV on the swap will give rise to counterparty exposure, while negative NPV will be

observed as a mark-to-market (MTM) loss on the swap. ENPV is the NPV of the swap based

on the forward curve at time zero. DENPV, on the other hand, is the expected NPV of the

swap based on the simulated yield curves. The ENPV and DENPV curves should follow very

closely, and any observed difference in the graphs below is due to limitation in the number of

simulations. Both expected NPV trajectories, start off at zero and then after an initial pull to

positive or negative territory, fall toward zero. Depending on the shape of the curve, there is

a point where both curves reach their maximum absolute value and then start pulling back to

zero. However, one must be careful in interpreting the ENPV curve. The observed pattern of
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the ENPV, discussed above, is due to the mismatch between the fixed payments and floating

payments of the swap, and does not represent a realized loss or gain for either counterparty,

rather, it represents the difference in the mark-to-market values of the cash coupons exchanged

up to that point in time. The difference between Potential Loss Exposure and the ENPV, on

the other hand, represents a clear potential for a loss in MTM value of the swap, due to adverse

movements in the yield-curve. From the graphs, one can see that a higher value of σ gives rise to

higher volatility in rates, as expected, and hence also a higher potential loss in mark-to-market

value of the swap.

The difference between Potential Gain Exposure and the ENPV represents the potential gain

the receiving counterparty can realize as a net profit. It is essential to understand that any

NPV value above the expected NPV can be interpreted as a gain for the receiving counterparty,

due to changes in the yield-curve, and its subsequent impact on the mark-to-market of the

swap. However, we will only consider positive NPV where there will be a credit exposure

to the counterparty. As is the case with PLE, higher values of Sigma result in higher PGE.

Expected Loss Exposure and Expected Gain Exposure are defined as the expected NPV, but

conditioned on negativity, or positivity, of NPV, respectively. The difference between Expected

Loss Exposure and Expected NPV can be viewed as the MTM loss one would expect under the

simulated rate scenarios, given there will be a loss. Expected Gain Exposure, on the other hand,

can be viewed as the expected counterparty exposure the receiving party will see on the swap,

given there is a counterparty exposure.

By comparing the results from the hump-shaped, inverted, and upward-sloping yield-curves,

one can study the impact of the yield-curve shape on these measures. ENPV falls below zero,

and then slowly increases toward 0, in an upward-sloping curve, while under the special case of

a hump-shaped yield curve the ENPV initially moves above zero, and then slowly falls toward

0. Under an inverted yield-curve the ENPV stays close to zero. As can be observed from

the results, the PLE indicates lower potential NPV values under the upward-sloping curve,

compared to under the humped-shaped or inverted yield-curves. Also, the PLE generally

rebounds more slowly toward 0 under the upward-sloping yield-curve. At the same time, PGE

indicates higher potential NPV values under the humped-shaped yield-curve, compared to the

NPV under the upward-sloping or inverted yield-curves. In all three interest rate environments,

PLE and PGE follow similar trends, exposing the receiving party to a potentially large MTM

loss, or a potentially large counterparty exposure early into the contract.
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6. Conclusion:

In this paper we have presented several historically notable interest rate swap deals which have

been reported to have produced significant losses as a result of large, unanticipated, interest rate

movements, and the resulting liquidity and capital constraints. In order to provide the reader

with the background necessary to make an informed investigation of such cases, we have reviewed

the basic structure of interest rate swaps, and the mathematical foundation of the valuation of

such vanilla interest rate swaps. We have provided a comprehensive treatment of the Hull-

White and Black-Karasinski interest rate models, including their theoretical and mathematical

details, as well as their implementation through the use of tree-structures. It is hoped that the

depth of this coverage is sufficient to provide practitioners with the background necessary to

implement these models, for their own purposes. We have explained that the above interest

rate models belong to the class of arbitrage-free interest rate models, and have included an in-

depth discussion of modeling under risk-neutral verses real-world measures, or probabilities. An

effort has been made to clarify the subtleties between, and limitations of, these two approaches,

especially as they pertain to models which are the solution to stochastic differential equations,

which is often absent in coverage of this material in the literature. We discuss that while risk-

neutral models are generally used for pricing and less often for risk management purposes, they

do have several benefits, including the ability to provide an objective framework from which

exposures can be analyzed. We do acknowledge that, when performing such exposure analysis,

many in industry rely on real-world measures, or as we point out, approximations to the real-

world measure based on historical data. We note that implicit in the use of such techniques is

an element of subjective view on the market, and the assumption that history will repeat itself,

which may often be desirable characteristics. In this paper we use a hybrid approach to model

the potential exposure generated from interest rate swaps. We employ the Black-Karasinski

interest rate model, which is the solution to a stochastic differential equation with respect to

a risk-neutral measure, yet for which some of the parameters of the model are calibrated using

historical data. We argue that such a model can also be used for exposure analysis, with the

caveat that one should never rely on a single model, and in particular, when performing capital

modeling or risk management, models calibrated using various subsets of historical data should

be among those employed. Hence, the techniques presented in this paper should be viewed as

one of many potential modeling techniques in the analyst’s toolkit.

Finally, we analyze the potential exposure of vanilla interest rate swaps under the most common

yield curve shapes, and also under several different volatility assumptions, in order to provide

a comparison of the potential interest rate exposure that may be generated over the term of a

contract. To perform this analysis many forward yield-curves are simulated using an arbitrage-

free interest rate model, which is commonplace in industry, and which produces simulations

which are consistent with the initial yield-curve, on an expected basis. The analysis highlights the
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significant marked-to-market(MTM) or counterparty exposure that could arise due to changing

interest rates, and illustrates the importance of measuring this potential exposure, which as

illustrated, may result in significant MTM losses and necessitate substantial collateral posting.

In fact, the amount of collateral posting may be so significant as to force an end-user to unwind

the contract, in which case the MTM loss will be realized. Also, we highlight the potential for

significant MTM gains, which on the other hand, will create a counterparty exposure if the swap

is not collateralized.

It is our hope that this paper provides the reader with an understanding of the details, some of

which are potentially subtle, surrounding the analysis of these seemingly benign interest rate

derivatives, and will aid the practitioner in managing the risks of these very beneficial and

ubiquitous financial products.
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7. appendix:

6.A Iterated Expected Values:

Note that EQ0

(
EQt (X)

)
∼= EQ

(
EQ(X | Ft)

∣∣∣ F0

)
= EQ(X | F0) = EQ0 (X),

and where Ft is a concept from mathematical probability called a Filtration. A filtration can

be thought of as the amount of information available at time t regarding the evolution of the

process up-to, and including, time t. Hence, the expected value conditional on the filtration at

time t represents expected values looking forward from time t, and based on the information

available at time t.

6.B Solution to Black-Karasinski SDE:

In order to solve the SDE: d ln(rt) = [θ(t)− α(t) ln(rt)]dt + σ(t)dZt

let:

J(t) =

∫ t

0
α(τ)dτ , and Yt = ln(rt),

then:

d(eJ(t)Yt) = eJ(t)J ′(t)Ytdt + eJ(t)dYt = eJ(t)α(t)Ytdt + eJ(t)
(

[θ(t)−a(t)Yt]dt + σ(t)dZt

)
=

= eJ(t)
(
θ(t)dt + σ(t)dZt

)
.

Then integrating both sides from s to t, where s < t:

∫ t

s
d(eJ(τ))Yτdτ =

∫ t

s
eJ(τ)θ(τ)dτ +

∫ t

s
σ(τ)eJ(τ)dZτ .

⇒ eJ(t)Yt − eJ(s)Ys =

∫ t

s
eJ(τ)θ(τ)dτ +

∫ t

s
σ(τ)eJ(τ)dZτ .

⇒ Yt = e(J(s)−J(t))Ys +

∫ t

s
eJ(τ)−J(t)θ(τ)dτ +

∫ t

s
σ(τ)eJ(τ)−J(t)dZτ .

→ Yt = e−(J(t)−J(s))Ys +

∫ t

s
e−(J(t)−J(τ))θ(τ)dτ +

∫ t

s
σ(τ)e−(J(t)−J(τ))dZτ .
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Hence:

ln(rt) = e−(J(t)−J(s)) ln(rs) +

∫ t

s
e−(J(t)−J(τ))θ(τ)dτ +

∫ t

s
σ(τ)e−(J(t)−J(τ))dZτ .

→ rt = exp
[

ln(rs)e
−(J(t)−J(s)) +

∫ t

s
e−(J(t)−J(τ))θ(τ)dτ +

∫ t

s
σ(τ)e−(J(t)−J(τ))dZτ

]
for t > s.

6.C Closed form solution for Hull-White model:

In the constant coefficient version of the Hull-White SDE the short-rate which solves the SDE

has form:

rt = rse
−α·(t−s) +

∫ t

s
e−α·(t−τ)θ(τ)dτ + σ

∫ t

s
e−α·(t−τ)dZτ

for t > s. In particular, for s = 0, we have:

rt = r0e
−αt +

∫ t

0
e−α·(t−τ)θ(τ)dτ + σ

∫ t

0
e−α·(t−τ)dZτ

Since, the price at time 0 of a zero-coupon bond with maturity T is:

P (0, T ) = EQ
(

exp
[
−
∫ T

0
ry dy

])
= EQ

(
e−X(T )

)
,

we investigate: X(T ) =

∫ T

0
ry dy.

X(t) =

∫ t

0
ry dy =

∫ t

0

[
r0e
−αy +

∫ y

0
e−α·(y−τ)θ(τ)dτ + σ

∫ y

0
e−α·(y−τ)dZτ

]
dy =

=

∫ t

0
r0e
−αydy +

∫ t

0

∫ y

0
e−α·(y−τ)θ(τ)dτdy + σ

∫ t

0

∫ y

0
e−α·(y−τ)dZτdy.

36



C
op
yr
ig
ht

c©
20
13

So
ci
et
y
of
A
ct
ua
ri
es

1

Now, integrating the first term, and reversing the order of integration in the next two terms,

we have:

X(t) =
r0
α

(1− e−αt) +

∫ τ=t

τ=0

∫ y=t

y=τ
e−α·(y−τ)θ(τ)dydτ + σ

∫ τ=t

τ=0

∫ y=t

y=τ
e−α·(y−τ)dydZτ .

Then, noting that:

∫ τ=t

τ=0

∫ y=t

y=τ
e−α·(y−τ)θ(τ)dydτ =

∫ τ=t

τ=0
eατθ(τ)

(∫ y=t

y=τ
e−αydy

)
dτ =

∫ τ=t

τ=0
eατθ(τ)

(e−ατ − e−αt
α

)
dτ =

=
1

α

∫ τ=t

τ=0
eατθ(τ)

(
e−ατ − e−αt

)
dτ =

1

α

∫ τ=t

τ=0
θ(τ)

(
1− e−α·(t−τ)

)
dτ .

and:

∫ τ=t

τ=0

∫ y=t

y=τ
e−α·(y−τ)dydZτ =

∫ τ=t

τ=0
eατ
(∫ y=t

y=τ
e−αydy

)
dZτ =

∫ τ=t

τ=0
eατ
(e−ατ − e−αt

α

)
dZτ =

=
1

α

∫ τ=t

τ=0
eατ
(
e−ατ − e−αt

)
dZτ =

1

α

∫ τ=t

τ=0

(
1− e−α·(t−τ)

)
dZτ .

Therefore:

X(t) =
r0
α

(1− e−αt) +
1

α

∫ τ=t

τ=0
θ(τ)

(
1− e−α·(t−τ)

)
dτ +

σ

α

∫ τ=t

τ=0

(
1− e−α·(t−τ)

)
dZτ .

Note that the only randomness in the formula for X(t) is in the last term, since Zτ is a Brownian-

motion. Therefore, X(t) is a Gaussian process, and we can figure out its mean and variance.

The integral in the last term in the equation for X(t) can be written:

∫ τ=t

τ=0
f(τ)dZτ , where f(τ) = 1− e−α·(t−τ) ∈ L2([0, t])

Hence,

∫ τ=t

τ=0

(
1− e−α·(t−τ)

)
dZτ is a Weiner integral, and so we have:

∫ τ=t

τ=0

(
1− e−α·(t−τ)

)
dZτ ∼ N

(
0,

∫ t

0
f(τ)2dτ

)
.

Therefore:
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E
(
X(t)

)
=

r0
α

(1−e−αt) +
1

α

∫ τ=t

τ=0
θ(τ)

(
1−e−α·(t−τ)

)
dτ +

σ

α
E
[ ∫ τ=t

τ=0

(
1−e−α·(t−τ)

)
dZτ

]
=

=
r0
α

(1− e−αt) +
1

α

∫ τ=t

τ=0
θ(τ)

(
1− e−α·(t−τ)

)
dτ .

and:

V ar
(
X(t)

)
=

σ2

α2
V ar

[ ∫ τ=t

τ=0

(
1− e−α·(t−τ)

)
dZτ

]
=

σ2

α2

∫ t

0

(
1− e−α·(t−τ)

)2
dτ =

=
σ2

α2
t +

σ2

2α3

(
4e−αt − e−2αt − 3

)
.

Now we recalling that P (0, t) = EQ
(

exp
[
−X(t)

])
, we can use the fact that X(t) is a

Gaussian process together with the mean and variance above, to find an expression for P (0, t).

Recall, for a Gaussian random variable X: MX(t) = E
(
eXt
)

= eµt+
1
2
σ2t2 , so:

P (0, t) = EQ
(
e−X(t)

)
= MX(t)(−1) = exp

[
− E

(
X(t)

)
+

1

2
V ar

(
X(t)

)]
.

Therefore:

ln
(
P (0, t)

)
= −E

(
X(t)

)
+

1

2
V ar

(
X(t)

)
.

Also:

f(0, t) = − d

dt
ln
(
P (0, t)

)
= − d

dt

[
− E

(
X(t)

)
+

1

2
V ar

(
X(t)

)]
=

d

dt
E
(
X(t)

)
− 1

2

d

dt
V ar

(
X(t)

)
.

where f(0, t) is the instantaneous forward rate, and so:

d

dt
f(0, t) = − d2

dt2
ln
(
P (0, t)

)
= − d2

dt2

[
−E
(
X(t)

)
+

1

2
V ar

(
X(t)

)]
=

d2

dt2
E
(
X(t)

)
−1

2

d2

dt2
V ar

(
X(t)

)
.

and from the above equations for E
(
X(t)) and V ar

(
X(t)) :

α
d

dt
E
(
X(t)

)
= r0αe

−αt + α

∫ t

0
θ(τ)e−α·(t−τ)dτ ,
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and:

d2

dt2
E
(
X(t)

)
= −r0αe−αt − α

∫ t

0
θ(τ)e−α·(t−τ)dτ + θ(t).

Therefore: α
d

dt
E
(
X(t)) +

d2

dt2
E
(
X(t)) = θ(t).

Also:

−1

2
α
d

dt
V ar

(
X(t)

)
= −σ

2

2α
+

σ2

α
e−αt − σ2

2α
e−2αt,

and:

−1

2

d2

dt2
V ar

(
X(t)

)
=
σ2

α
e−2αt − σ2

α
e−αt.

Therefore: −1

2
α
d

dt
V ar

(
X(t)

)
− 1

2

d2

dt2
V ar

(
X(t)

)
= − σ2

2α

(
1− e−2αt

)
.

So, all together:

αf(0, t) +
d

dt
f(0, t) =

(
α
d

dt
E
(
X(t)

)
−α1

2

d

dt
V ar

(
X(t)

))
+

(
d2

dt2
E
(
X(t)

)
−1

2

d2

dt2
V ar

(
X(t)

))
=

=

(
α
d

dt
E
(
X(t)

)
+
d2

dt2
E
(
X(t)

))
−
(
α

1

2

d

dt
V ar

(
X(t)

)
+

1

2

d2

dt2
V ar

(
X(t)

))
=

= θ(t)− σ2

2α

(
1− e−2αt

)
.

Therefore: θ(t) = αf(0, t) +
d

dt
f(0, t) +

σ2

2α

(
1− e−2αt

)
.
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