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Abstract 
 

Operational risk has become recognized as a major risk class because of huge operational losses 
experienced by many financial firms over the last past decade. Unlike market risk, credit risk, and 
insurance risk, for which firms and scholars have designed efficient methodologies, there are few tools to 
help analyze and quantify operational risk. The new Basel Revised Framework for International 
Convergence of Capital Measurement and Capital Standards (Basel II) gives substantial flexibility to 
internationally active banks to set up their own risk assessment models in the context of the Advanced 
Measurement Approaches (AMA).  This paper investigates the implications for using the AMA as a 
method to assess operational risk capital charges for banks and insurance companies within Basel II 
paradigms and with regard to U.S. regulations. The AMA developed in the paper  uses actuarial loss 
models complemented by the extreme value theory to determine the empirical probability distribution 
function of the aggregated capital charges in the context of  various classes of copulas. Publicly available 
operational risk loss data set is used for the empirical exercise. 
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1 - Introduction 

There exist four computational methodologies to determine the regulatory capital requirement 

for financial institutions. These include fixed ratios, risk-based capital, scenario-based 

approaches1 and probabilistic approaches (IAIS, 2000). 

In many views (see for example IAIS, 2000, KMPG, 2002), probabilistic approaches 

such as the Advanced Measurement Approach (AMA), provide the preferred greatest framework 

for a meaningful capital requirement characterization.  These methodologies use simulations to 

determine the full probability distribution of possible outcomes from which the capital 

requirement is determined using ruin-probability, expected policyholder approaches 

(Butsic,1994) or other risk measures. As such, probabilistic methodologies are the most complex 

of the four approaches to assessing regulatory capital charge in terms of consistency, 

codification, and data requirements. Their complexity is also reflected in large costs associated 

with their application (KMPG, 2002).  

As to the operational risk, it has been assumed that this specific risk will be more 

accurately captured under the AMA2 and, therefore, incentives in terms of a lower capital charge 

granted to AMA applicant banks that refine and develop sound operational risk methodologies 

(Fitch, 2004). However, due to the specificity of this major risk class, there is no clear idea about 

the actual implications for using the AMA as a method to assess operational risk capital charge 

and, importantly, how its implementation would ultimately result in a lower capital charge for 
                                                 
1  Under the fixed ratio method, the capital requirement is expressed as a fixed proportion of a proxy for exposure 

to risk often an item from the insurer’s balance sheet or profit and loss account 
Under the risk-based capital model, sub-results are determined by applying factors to exposures proxies such as 
invested assets risks, reserving risks, just like in the fixed ratio model. 
KMPG (2002) describes scenario-based model as a methodology that explores the impact of specific risk 
variables to company specific exposure for insurers 

2 The two other approaches include the basic indicator approaches set according to the fixed ratio methodology and 
the standardized approaches established according to the risk-based capital approach.   
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financial institutions that adopt it. According to a survey carried out by Fitch in 2004, forty-two 

large banks around the world believe that the AMA may generate capital charges that are not 

lower than those under the standardized or basic indicator approaches (Fitch, 2004). 

As of today, there is a small body of literature that focuses on how the AMA should be 

effectively implemented in financial institutions. AMA literature started in 2001 when the Basel 

Committee on Banking Supervision (the Committee) published its document in September 2001 

“Working Paper on the Regulatory Treatment of Operational Risk”. With regard to the AMA-

related academic literature, Embrechts et al. (2003), Chavez-Demoulin and Embrechts (2004b), 

Embrechts et al. (2004) question the ability of the standard actuarial model3 as well as the 

extreme value theory4 to adequately address AMA issues because the assumptions behind these 

models are barely in line with the actual characteristics of operational risk losses. The authors 

consider models that include the particular case of the Cramer-Lundberg model5, and general risk 

processes where the underlying intensity model follows a finite state Markov chain, allowing the 

modeling of underlying changes in the economy. In line with Embrechts et al., Chernobai and 

Rachev (2004) advocate for use of the compound Cox model6 or the alpha-stable distribution 

model7 (depending on the finiteness of the second moment of the loss severity random variable) 

instead of the simple compound Poisson process.  

As it appears, nearly all of these models suggest approaches which are more appropriate 

for larger data sets. As a result, there is a need for more formal empirical research about 

                                                 
3  Klugman et al. (2004) 
4  Embrects et al. (1997) 
5  See Embrects et al. (1997) 
6  See Bening et al. (2002). 
7 Zolotarev (1994), Embrechts et al., (1997), Rachev, S. Mittnik, S.  (2000), Nolan (2001), 
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operational risk capital requirements, taking into account various constraints in terms of data 

availability, data collection costs, limited computational resources, and  limited decision time. 

On the practitioners’ side, Frachot et al (2001),  Frachot et al (2002),  and Baud et al 

(2002) describe the Loss Distribution Approach (LDA) for operational loss and provide a 

methodology that allows banks to pool  internal data with external data to calibrate operational 

risk capital charge. Fontnouvelle et al (2003) use the aforementioned methodology to provide 

preliminary empirical evidence on how publicly available operational loss data could be used to 

calibrate large loss severity distribution functions and capital charges. In their model, the random 

truncation point used to report publicly available losses is assumed to be logistically distributed. 

This assumption highly impacts the severity distribution function and even though it is 

computationally convenient, it has been criticized on the account that it is not grounded on 

empirical evidence (Leandri, 2003). In addition, the dependency across risk categories is not 

accounted for. Di Clemente et al (2003) develop a model that considers dependence structure 

based on the Student’s t-copula and historical rank correlations. The empirical exercise, 

however, is carried out using catastrophe insurance loss data of three different lines – namely, 

hurricane, wind-storm, and flood. As such the authors do not consider actual operational risk loss 

data issues.  

This study is concerned with the issues raised in determining the capital charge in the 

context of the AMA that (1) models the loss severity probability distribution function of large 

losses based on external data, size and quality of internal risk control of organizations, (2) 

estimates the diversification effect by investigating the sensitivity of the capital charge to 

different types of dependence structures among risk types.  It also provides information on the 
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capital charges that banks and insurance companies would be required to hold in order to face 

operational risk losses within Basel II paradigms and with regard to US regulations. 

Our key conclusions are as follows: First, in the context of large losses, the assumption 

that contributors’ operational loss data are sampled from the same probability distribution 

provides a straightforward way to apply the loss distribution approach to operational risk. As a 

result, by properly accounting for the reporting bias, size and quality of internal risk control, the 

loss severity of a typical organization could be calibrated accordingly. Second, the loss severity 

significantly impacts the capital charge, much more than assumptions regarding the dependence 

structure among risk types. Third, for banks and insurers, the loss event type, clients, products 

and business practices (CPBP) appears as the main risk driver. For banks, internal fraud accounts 

for a large proportion of losses as well. Fourth, the level of capital charge estimates indicate that 

banks and insurers need to place an extensive focus on this specific risk, chiefly  by improving 

the quality of their internal risk control. 

The remainder of the paper proceeds as follows. Section 2 provides a concise background 

on operational risk management. Section 3 describes the data set and gives key descriptive 

statistics. The methodology is explained in section 4 and section 5 presents the main results. 

Section 6 concludes.  

2 – Background on Operational Risk Management  

A look inside the banking industry over the last decade clearly reveals two stylized facts. On the 

one hand, increasing complexity of financial technology combined with deregulation and 

globalization trends have made banking practices more sophisticated and challenging. As a 

result, the industry faced new multifaceted risks envisioned as part of ‘other risks’ and as such, 
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different from market and credit risk. These include system security and fraud risks due to the 

expansion of e-commerce, system failure risks on account of the use of highly automated 

technology, and many other significant risks resulting from the increased use of outsourcing 

arrangements and new risk mitigation techniques such as credit derivatives, swaps, and asset 

securitization (BCBS, 2003c). On the other hand, the banking industry all over the world has 

witnessed a growing number of insolvencies and experienced high-profile ‘other risks’ losses. In 

1998, the press has reported more than US$7 billion of ‘other risks’ losses in financial service 

firms, including the insurance industry. These combined facts brought supervisors as well as 

banking and insurance executives to view the management of these ‘other risks’ as a 

comprehensive practice comparable to the management of credit and market risk (BCBS, 2003c). 

In quest of solutions to issues raised by these challenging ‘other risks’ faced by the 

banking industry, the Committee sets up in its June 1999 First Consultative Package, the 

principle of developing a Pillar One explicit capital charge for ‘other risks’, such as operational 

risk. Subsequent to the consultation process and its own analysis, the Committee adopted a 

definition of operational risk in its January 2001 Second Consultative Package and decided that 

only this specific risk should be subject to capital charges under Pillar One of the Framework 

(Minimum Regulatory Capital Requirements). Additional components of other risks such as 

interest rate risk and liquidity risk will be addressed only through Pillar Two (Supervisory 

Review Process) and Pillar Three (Market Discipline)8.  

The definition of operational risk, formulated by the British Bankers’ Association (BBA) 

has been refined in the September 2001 Working Paper on the Regulatory Treatment of 

Operational Risk, as follows: “the risk of loss resulting from inadequate or failed internal 

                                                 
8 The Committee believes that, taken together, these three elements (Minimum Regulatory Capital Requirements, 

Supervisory Review, and Market Discipline) are the essential pillars of an effective capital framework (BCBS, 
1999). 
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processes, people and systems, or from external events”. The Committee specified that the 

aforementioned definition encompasses legal risk but excludes systemic, strategic, and 

reputational risks for the purpose of a minimum regulatory operational risk capital requirement.  

With regard to the quantification methodologies, the Committee decided to stay 

consistent with its objective of moving away from the one-size-fits-all approach that prevailed in 

1988 Basel Accord. As a result, in its January 2001 Second Consultative package, the Committee 

published three methods for measuring operational risk capital charges in a continuum of 

increasing sophistication and risk sensitivity. These approaches include the Basic Indicator 

Approach that relates the capital charge to the gross income envisioned as a proxy for the bank 

overall risk exposure, the Standardized Approach that builds on the Basic Indicator Approach by 

business lines and the AMA that builds on the bank’s internal loss data. 

Until recently, within the banking industry, banks have managed operational risk as a 

“silo” focused activity, at the business-line level, and did not take a firm-wide view of 

operational risks except to the extent that it was envisioned as part of ‘other risks’, different from 

credit and market risk (BCBS, 2003a). However, in recent years, the previously observed trend 

has changed as a growing number of banks have paid extensive attention to operational risk as a 

specific discipline. This shift resulted from the two aforementioned facts, notably the newly 

multifaceted risks were thought as being partly responsible for the recent increase in operational 

risk losses across a number of banks. As a result, operational risk management was envisioned as 

a tool to reduce volatility in earnings and as such, a driver of shareholder value (BCBS, 2003a). 

With regard to the insurance industry, insurers have historically addressed the major part 

of their operational risk which they thought to be process risk, indirectly, through insurance risk9 

                                                 
9 For property/casualty insurer, insurance risk refers to loss reserve risk and premium risk. For life insurer, it 

represents mortality and morbidity risk. For health insurer, it denotes premium risk (AAA, 2002). 
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(BCBS, 2003a). Indeed, insurers focused very early on process risk due to the size of manual 

processing of information intrinsic to their business such as policy underwriting and claim 

processing. However, since process risk losses result in extra claims paid, these additional 

amounts were directly incorporated into premium charged to policyholders. As a result, 

straightforwardly assessing operational risk was not a key priority for insurers and no explicit 

capital charge was considered mandatory.  

Recently, it has been recognized that a major component of operational risks for 

insurance companies is market conduct risk which results from the use of third parties by 

insurers to sell their products. A well-publicized case of market conduct risk losses is that of 

Prudential Insurance Company of America in the mid-1990s (Shah et al., 2001).  

Shah et al. (2001) also point out that the use of Internet sales decreases market conduct 

risk exposure, but at the same time increases system security and fraud risk exposures and, as 

such, represents another major potential source of operational risk for insurers. 

In the United States, the National Association of Insurance Commissioners (NAIC) 

adopted its document “Risk-Focused Surveillance Framework, (the Framework)” in June 2004. 

Essentially, the Framework is conceived as a structured comprehensive methodology that 

proactively envisions the insurer’s risk profile and the quality of its risk management practices. 

As such, areas of greatest risk to insurers are efficiently addressed and state insurance regulators 

are in the position to better identify and take action against any existing and emerging risks that 

could jeopardize the stability of the insurance company (NAIC, 2004). Operational risk is 

recognized as a major risk class within the nine risk classifications10 identified by the 

Framework. The next section proceeds with the presentation of key descriptive statistics. 

                                                 
NAIC (2004) distinguishes nine risk classifications: Credit risk, market risk, pricing & underwriting risk, reserving 

risk, liquidity risk, operational risk, legal risk, strategic risk, reputation risk. 
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3- The Data Set 
 
The empirical investigation of the implications of employing the AMA is carried out by 

using publicly available operational losses from Fitch Risk Management. This firm 

captures financial and non-financial operational risk losses that are in excess of $1 

million from public sources such as court filings and news reports. In addition to 

individual losses, the data set contains various organizations’ exposure indicators such as 

number of employees, gross income, assets, physical assets, compensation, and deposits. 

Typically, these large operational losses are used to supplement banks’ internal loss data 

in calibrating the tail of the loss severity distribution. 

  In the sequel, key descriptive statistics are provided for the contributors of losses 

and individual losses that occurred in the United States. Contributors of losses are 

referred to as bank and insurance organizations in the US market that incurred the losses 

captured by Fitch.  

For the period ranging from 1980 to 2002, Table 1.1 indicates that operational 

losses were captured from 1245 bank organizations grouped in 998 parent banks and 381 

insurers grouped in 303 parent insurance organizations.  The total losses incurred by 

these organizations amount to $58,552 million for banks, and $ 22,535 million for 

insurers. In terms of total number of losses per contributor, Table 1.1 also shows that 

Fitch has captured only one loss in excess of 1$ million from nearly 80% of contributors.  

This is an important fact that impacts the calibration of the observed loss distribution. 

The following subsection analyzes the distribution of contributors’ truncation 

point above which Fitch captures operational losses. Fitch is supposed to capture and 

report all losses in excess of a threshold set to $1 Million and it is worth investigating the 



 10

actual distribution of this threshold by contributor. For US banks, Table 1.2 indicates that 

the contributor’s truncation point ranges from $1 million to $ 1979 million. Among 

business lines, Retail banking has the highest number of contributors, i.e. 599 and the 

highest contributor’s truncation point while payment and settlement has the lowest 

number of contributors, i.e. 21, and at the same time, the lowest contributor’s truncation 

point, i.e. $209 million. As to loss event types, CPBP has the highest number of 

contributors, i.e. 436  and the highest contributor’s truncation point, i.e. $ 1979 million. 

Internal Fraud ranks second with 436 contributors and the highest contributor’s 

truncation point i.e. $1836 million. 

 With regard to the insurance industry, CPBP has the highest number of 

contributors, i.e. 264 and the highest contributor’s truncation point, i.e.  $1094 million. 

 Both bank and insurer contributors’ truncation point are significantly skewed to 

the right. According to Table 1.2, 1.3 and 1.4, the coefficient of skewness is 14.80 for 

banks and 5.25 for insurers. A log scale is thus used to represent the distribution of 

contributors’ truncation point. 

Figures 1.1 and 1.2 show the histogram of the contributor’s log-truncation-point 

for US banks and insurers. For the first category, according to Table 1.5, the contributor’ 

truncation point at the 25th, 50th, 75th, and 95th percentiles are $2 million, $4 million, $12 

million, and $80 million, respectively. For the insurers, these percentiles are $2 million, 

$5 million, $19 million and $120 million.  

The results of these preliminary analysis visibly suggest that it would not be 

appropriate to treat the contributor’s truncation point as constant and known. 
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As to the size of these contributors, table 2.1 provides summary statistics for 

banks and insurers’ exposure proxied by their total revenue. It is noticed that more than 

50% of both organizations have no exposure reported. The revenue is clustered according 

to the euclidean distance into 3 categories based on the size of the organizations, i.e.  

small size, medium size and large size. According to this classification scheme, within 

the US bank contributors, 26 contributors could be considered as large bank while within 

the US insurer contributors, 10 could be deemed as large insurer. Table 2.2 shows that the 

median of the total revenue amounts to $7,793 million for banks and $9,241 million for 

insurers. The two aforementioned classifications are used to calibrate the loss severity 

distribution according to organization size. 

Figures 3.1 and 3.2 display the yearly aggregate losses for US banks from 1980 to 

2002. One notices the existence of a cycle with peaks in 1984, 1988, 1994, 1998 and 

2002. The length of the cycle is approximately four years. The first figure splits the total 

yearly aggregate losses into eight business lines. In 1988 and since 2000, retail banking 

has become a major business line in terms of yearly aggregate losses. Trading and sales 

ranks second. Figure 3.2 breaks the total yearly aggregate losses into the seven event 

types. Clearly, CPBP is the main risk driver of operational risk for US banks. Internal 

Fraud also accounts for an important part of the total yearly aggregate losses. Figure 3.3 

analyzes CPBP losses by splitting them into various components defined by Fitch. 

Deceptive sales practices and concealment followed by failure to disclose appear to be 

the main risk drivers of CPBP.  

As to US insurers, Figure 3.4 indicates that insurers’ operational losses started 

increasing from 1992 and that CPBP is also the main risk driver. It may be the case that 
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insurers’ operational losses are subject to more disclosure from 1992. Similar to US 

banks, Figure 3.5 shows that deceptive sales practices and concealment most account for 

insurance CPBP losses. 

Figure 3.6 compares the US bank and insurer yearly aggregate losses and 

indicates that banks incurred more operational losses than insurers. 

As to loss occurrences, Figure 3.7 displays the US bank yearly loss occurrences 

and indicates an upward trend. The same result holds true for the US insurer yearly loss 

occurrences as shown by Figure 3.8. 

Tables 4.1 and 4.2 show total loss amounts and occurrences incurred by the US 

banks from 1960 to 2003.  Total loss amounts are split into BCBS eight business lines 

and seven event types. Retail banking followed by trading and sales is the leading 

business line while CPBP and internal fraud are the two major loss event types.  

As to loss occurrences, retail banking has the highest number of individual losses 

both overall and specifically for CPBP. Again CPBP among the seven event types shows 

the highest number of individual losses. Internal fraud ranks second. Likewise, for the US 

insurers, Table 4.3 indicates that CPBP is the main risk.  

One notices that some business lines and event types such as agency service, 

payment and settlement, damage to physical assets and business disruption & system 

failure have few observations or no observations. 

In view of these results, it seems appropriate to conduct the calibration of the loss 

severity as well as the calculation of the capital charge by dividing banks’ activities as 

follows: 
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1- All business lines – CPBP (or relationship risk class according to Fitch 

classification). 

2- All business lines – Internal fraud and employment practices and workplace 

safety (or people risk class according to Fitch). 

3- All business lines – Other event types. 

For the insurance industry, the following classification is used. 

1- CPBP 

2- Other event types 

 

4- The Methodology 
 
 
4.1 - The standard collective risk model 
 
Typically, in actuarial science and in the quantitative operational risk management field, 

three building-block assumptions underpin the standard collective risk model, commonly 

referred to as LDA. These include: (1) loss occurrence is a random variable modeled by a 

counting process that is generally the Poisson process, (2) loss severities are independent 

and identically distributed, and (3) loss occurrence distribution is independent from that 

of the loss severity sequence. 

As to operational risk, the yearly aggregate loss for a specific cell i among the 56 

cells set by BCBS can be expressed as: 

 
1

N

i k
k

AggL L
=

= ∑  

where iAggL  denotes the yearly aggregate loss, N  the yearly loss occurrences, and kL  

the loss severity. BCBS sets the capital charge for this specific cell to:  
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 1(99.9%)i iCap F −=  
 
where 1

iF −  denotes the quantile function of the distribution of the cell i aggregate loss. 
 
For a bank as a whole, the aggregate loss AggL  is the sum of the aggregate loss for each 

cell, that is: 

 
56

1
i

i
AggL AggL

=

= ∑  

 
Initially, BCBS suggested that the total capital charge for a bank should be expressed as 

the sum of the capital charge for each cell, that is: 

 

 
56

1
i

i
Cap Cap

=

= ∑  

 
which means that aggregate losses across all cells are perfectly correlated, and therefore, 

the frequency and severity that drive aggregate losses are in turn driven by one source of 

uncertainty. Later on, this extreme assumption was revisited so that banks are now 

permitted to use internally generated correlations to account for the possible dependence 

structure among risk classes. 

 The application of LDA to operational risk has been criticized by many authors, 

(see for example Embrechts et al, 2003). According to these authors, operational losses 

display many features that are barely in line with the assumptions behind LDA. 

Unfortunately, an extension of the standard LDA, accounting for all operational loss’s 

specificities is beyond what is currently practicable in view of data availability and 

resources devoted to this risk class. 

As pointed out by Frachot et al (2004), taking into account correlations between 

loss occurrences of events is feasible and do not significantly change the standard LDA 
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model. By contrast, accounting for correlation between loss severities of different classes 

is much more complicated and extensively changes the underpinnings of the standard 

LDA. The next subsection uses the standard LDA combined with the extreme value 

theory, the random truncation statistical paradigm as well as copulas to derive the loss 

severity distribution and estimate the capital charge within the Monte Carlo simulation 

framework. 

4.2 - Loss severity distribution  

This subsection focuses on the calibration of severity distributions using publicly 

available operational loss data set. It was already pointed out that this specific data set is 

plagued by many biases that impede one’s ability to uncover the true underlying loss 

severity distribution. Frachot et al (2003) suggest two models to account for these biases. 

The first model deals with reporting biases and specifically assumes that contributors’ 

operational loss data are sampled from the same probability distribution, and as such are 

not different from each other. However, losses are captured according to some 

unobserved truncation point that needs to be accounted for.  Essentially, model 1 assumes 

that with regard to publicly available operational loss data set, all losses are not captured 

and reported and one would expect a positive correlation to exist between the loss amount 

and the probability that the loss is reported. As a result, the data set contains a 

disproportionate number of very large losses (Fontnouvelle et al , 2003). This 

phenomenon is referred to as the reporting bias. 

The second model deals with scaling issues and assumes that contributors’ 

operational loss data are essentially different by nature because they originate from 

different probability distributions and as such, they need to be re-scaled. Furthermore, the 
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unobserved truncation point should be accounted for. In an attempt to solve this scaling 

issue, Shih et al (2001) suggest the following relationship between the size of a firm and 

its individual loss amount: 

( )L R Fα θ= ×  

where L  is the actual loss, R  the gross revenue,  α  the scaling factor, and θ  the vector 

of risk factors not explained by revenue. The study reveals that the size of a firm is poorly 

correlated to its size of loss. 

 Allianz (2001) proposes the following formula to scale operational losses. 

.1 1. .
.

b
EIBank AX X aBank X Bank A EIBank X

= × + −

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

where .X Bank X  is the gross operational loss at bank X ,  .X Bank A  the gross operational 

loss at bank A ,  EI  an exposure indicator, a and b parameters obtained by a regression 

analysis. 

In line with Frachot et al (2003), it is acknowledged that model 2 is the most 

accurate approach. It constrains each bank to derive its specific scaling formula not only 

for the external loss data but also for the internal loss data generated by different business 

lines within the bank. However, its reliable implementation requires the use of a large set 

of data that banks and insurers currently do not hold. As soon as operational loss data sets 

substantially grow, further investigation could be carried out along this line of reasoning. 

As of today, for large losses, especially those in the tail (in excess of $1 million), it is 

worth assuming that the reporting bias is the most important issue within the model 1 

framework. The following lines build on Fontnouvelle et al (2003) and suggest a 
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symbolic approach that easies the calibration of the loss severity. The random truncation 

modeling is described as follows: 

Let us consider two independent random variables  and  X H  and let 

| ( | )X H Xf x h x< <  denote the probability density function of the observed values of X  

randomly truncated by H  (that is, X is observed when it exceeds the unobserved 

truncation point H ). Then | ( | )X H Xf x h x< <  is given by  

|
( ) ( )( | )
( ) ( )

X H
X H X

X H

f x F xf x h x
f t F t dt

< < =

∫
 

where ( ) and  ( )HXf x F x  represent the probability density function and the cumulative 

distribution function of   and  X H , respectively. Random truncation modeling is 

generally used in economics, reliability, and astronomy. In this latter field, it is known as 

the Malmquist bias in the study of galaxies. 

Now let *X denote the random variable representing the reported loss, u  the 

nominal threshold ($1 million) and the * *log( ) log( ) |X X u X u= − >  the conditional 

excess loss. If one assumes that the distribution of operational losses of a specific 

business line/event type belong to the maximum domain of attraction of either the 

Frechet distribution or the Gumbel distribution and if we consider u  as a sufficient high 

threshold, results from EVT (Embrechts et al, 1997), indicate that the distribution 

function of X  may be approximated by 0, ( ) 1 exp xG xβ β
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 which is the exponential 

distribution with density  0,
1( ) exp xg xβ β β

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 
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As to the random truncation point *H , in addition to the known and constant case, this 

paper assumes two other distributions for *log( )H H= , namely the logistic distribution as 

in Fontnouvelle (2003) and the normal distribution. A fourth case, worth mentioning is 

that of the alpha stable non Gaussian exponentially truncated distributions. This class of 

distributions is gaining importance in empirical finance in that it provides better fit of the 

tails of distribution than normal distributions. As pointed by Nolan (2001), these 

distributions are now more computationally tractable and should be part of quantitative 

risk managers’ toolkit.  This will be examined in future work. 

Let ( , )X H denote the random vector representing the conditional excess log 

losses and the log random truncation point, let ( )H X<  denote the event that 

characterizes publicly available operational risk loss data. For the random truncation 

point distribution, let  and  σ µ  denote the scale and location parameters respectively.  

For the normal distribution, 

21 1( ) exp
22

h

H
t hF h dtµ µ
σ σπσ −∞

⎛ ⎞− −⎛ ⎞ ⎛ ⎞= − = Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∫  

where Φ  denote the standard normal cumulative distribution function. 

For the logistic distribution,  

1( )
1 exp

HF h
h µ
σ

=
−⎛ ⎞+ −⎜ ⎟

⎝ ⎠
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The expression of the severity is then described as follows: 

|

exp
,  for the normal case

exp

exp
( | )

1 exp
,  for the logistic case

exp

1 exp

X H X

x x

t t dt

x
f x h x

x

t

dt
t

µ
β σ

µ
β σ

β
µ

σ

β
µ

σ

<

⎧ ⎛ ⎞ −⎛ ⎞− Φ⎪ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎪
⎪ ⎛ ⎞ −⎛ ⎞− Φ⎪ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎪
⎪ ⎛ ⎞⎪ −⎜ ⎟⎪ ⎝ ⎠< = ⎨

−⎪ ⎛ ⎞+ −⎜ ⎟⎪ ⎝ ⎠⎪
⎛ ⎞⎪ −⎜ ⎟⎪ ⎝ ⎠⎪

−⎛ ⎞⎪ + −⎜ ⎟⎪ ⎝ ⎠⎩

∫

∫

 

The computation is based on 2003 year data available. The loss amounts are expressed in 

real terms, over m years. The lower bound of the domain of integration is adjusted 

accordingly. In real terms, a loss with nominal value 0x u≥  that occurs in year 2003k ≤ , 

amounts to 2003
0

k

CPIx x
CPI

= ×  in 2003, where kCPI denotes the year k  Consumer Price 

Index. As a result, the lower bound of the conditional excess 

loss 2003
0ln ln( )

k

CPIx x u
CPI

⎛ ⎞
= × −⎜ ⎟

⎝ ⎠
 for any loss 0x u≥ that occurred in year k  is  

2003

2003

ln ln( )

    ln

lb
k

k

k

CPIx u u
CPI

CPIu
CPI

⎛ ⎞
= × −⎜ ⎟

⎝ ⎠
⎛ ⎞

= ×⎜ ⎟
⎝ ⎠

 

Thus,  
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|

exp
,  for the normal case

exp

exp
( | )

1 exp
,  for the logistic case

exp

1 exp

X H X

lbxk

lbxk

x x

t t dt

x
f x h x

x

t

dt
t

µ
β σ

µ
β σ

β
µ

σ

β
µ

σ

<

⎧ ⎛ ⎞ −⎛ ⎞− Φ⎜ ⎟⎪ ⎜ ⎟ ⎝ ⎠⎝ ⎠⎪
⎪ ⎛ ⎞ −⎛ ⎞− Φ⎪ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎪
⎪

⎛ ⎞⎪ −⎪ ⎜ ⎟< = ⎨ ⎝ ⎠
⎪ −⎛ ⎞+ −⎪ ⎜ ⎟

⎝ ⎠⎪
⎪ ⎛ ⎞

−⎪ ⎜ ⎟
⎝ ⎠⎪

−⎪ ⎛ ⎞+ −⎜ ⎟⎪ ⎝ ⎠⎩

∫

∫

 

 

This means that the support of the probability density function | ( | )X H Xf x h x< <  

describing the observed losses is the interval 2003ln ,
k

CPI
CPI

⎡ ⎞⎛ ⎞
+∞⎟⎢ ⎜ ⎟ ⎟⎝ ⎠⎣ ⎠

 

Application 

The following subsection describes the maximum likelihood methodology used to 

estimate the parameters ( , , )β µ σΘ =  of the observed severity distribution, assuming a 

logistic distribution for the log of the random truncation variable.  

Suppose that one is interested in estimating the parameters of the severity for a 

specific business unit/event type cell. The publicly available operational risk data loss 

consists of n losses beyond $1 million over m  years, that is { } { }{ }11, ,..., ,
nk n kx T x T  with 

ikT denoting the year of occurrence of loss ,1i ix k m≤ ≤  and 1 i n≤ ≤ .  
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{ } { }{ }11, ,..., ,
nk n kx T x T  is then transformed into { } { }{ }11, ,..., ,

n
lb lb
k n kX x x x x=  where 

2003ln
i

i

lb
k

k

CPIx
CPI

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

The maximum likelihood function based on the data { } { }{ }11, ,..., ,
n

lb lb
k n kX x x x x= is 

given by  

1

( | ) ( | , )( | )
( | ) ( | , )

lb
ki

n
X i H i

i
X H

x

f x F xL X
f t F t dt

β µ σ

β µ σ
∞

=

×
Θ =

×
∏

∫
 

1

exp

1 exp
( | )

exp

1 exp
i

i

i
n

i

lbxk

x

x

L X
t

dt
t

β
µ

σ

β
µ

σ

=
∞

⎛ ⎞
−⎜ ⎟
⎝ ⎠

−⎛ ⎞+ −⎜ ⎟
⎝ ⎠Θ =
⎛ ⎞
−⎜ ⎟
⎝ ⎠

−⎛ ⎞+ −⎜ ⎟
⎝ ⎠

∏

∫

 

This maximum likelihood procedure is computationally intensive and 

considerably complicated to handle (Baud et al, 2002, Fontnouvelle et al, 2003, Frachot 

et al 2003) mainly because of the integral appearing in the denominator. One way to deal 

with this specific integral is to implement a symbolic computational framework so as to 

convert it into symbolic “numerics”. 

 

Since  

2003 2003

2003

ln ,..., ln
i

lb
k

m

CPI CPIx
CPI CPI

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
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and 2003...mCPI CPI≤ ≤  do not depend on the loss amount ix  it is feasible to 

symbolically compute beforehand the vector of integrals  

exp

1 exp
i

i

k
lbxk

t

I dt
t
β

µ
σ

∞
⎛ ⎞
−⎜ ⎟
⎝ ⎠=

−⎛ ⎞+ −⎜ ⎟
⎝ ⎠

∫  

with { }1,...,i mk T T∈ . 

Now, one can express the maximum likelihood function as  

1

exp
( | )

1 exp

i
n

i i
i

x

L X
xy

β
µ

σ
=

⎛ ⎞
−⎜ ⎟
⎝ ⎠Θ =

⎛ − ⎞⎛ ⎞× + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏  

where 
ii ky I= for some ik . 

The computational process is now based on the set of data { } { }{ }1 1, ,..., ,n nx y x y . 

 Specifically, the code of the above algorithm can be implement in Mathematica as 

follows: 

Step 1 

Define a vector containing the 2003ln
i

i

lb
k

k

CPIx
CPI

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 as cpiVector  

Step 2 

Compute the vector of integrals symbolically  

{ }
cpiVector[[i]]

exp
integralVector=Table[ , i,1,Length[cpi]

1 exp

t

dt
t
β

µ
σ

∞
⎡ ⎤
−⎢ ⎥
⎣ ⎦

−⎡ ⎤+ −⎢ ⎥⎣ ⎦

∫  

This vector is computed once and saved on disk for future use. 
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For example, the expression of 
1k

I the first component of integralVector, is expressed in 

Mathematica numerics  as follows: 

Æ
−J 1

b+βNτ JÆβτπ H−1+ bβL CscA π
bβ

E − bÆ
τ
b β Hypergeometric2F1A1, 1− 1

bβ
, 2− 1

bβ
, −Æ−βτEN

β H−1+ bβL  

Step 3 

Define the probability density function as  

exp

1 exp

x

f
xy

β
µ

σ

⎛ ⎞
−⎜ ⎟
⎝ ⎠=

⎛ − ⎞⎛ ⎞× + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

Step 4 

Express the maximum likelihood function as  

{ }( )
n

i=1
LogL=Log / . ,i if x x y y

⎡ ⎤
→ →⎢ ⎥

⎣ ⎦
∏  

Step 5 

Compute the observed log-likelihood from a matrix dataMat, containing 

individual losses with their ages. 

{ } _

_

sampleLik=LogL/. n->Length[dataMatrix] , : dataMat[[i,1]]

: integralVector[dataMat[[i,2]]]}
i

i

x

y

→

→
 

Step 6 

The values of the parameters are then computed by maximizing the objective 

function sampleLik with an optimization program. These values are relevant to large 

internationally active banks. 
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 The aforementioned approach is easy to implement, significantly reduces the 

computing time and as a result, facilitates the calibration of the loss severity which is a 

major issue in operational risk modeling.   

Severity of a specific organization 

The parameters of the severity as well as those of the random truncation point were 

derived assuming that all losses from the data set were incurred by a typical large 

internationally active bank (Fontnouvelle et al, 2003). In the rest of the paper such a large 

internationally active bank will be simply referred to as an “industry-wide organization”. 

Furthermore, it is possible to envision different categories of industry-wide organizations, 

each with a specific yearly loss frequency distribution. Tables 5.1 and 5.2 present the 

maximum likelihood estimates of the loss severity distribution parameters for such an 

organization. This section investigates the extent to which Fitch data set could be 

appropriate to calibrate the severity of a specific bank.  In other words, if all these losses, 

drawn from the same probability distribution, were incurred by a specific firm, how could 

one account for the positive relationship that exists between the loss amount and the 

probability of its disclosure? This is an important question left for future research in 

Fontnouvelle et al (2003). 

The following subsection proposes an approach rooted in model 1 that uses the 

concept of Probable Maximum Loss – PML to account for firm size and quality of 

control environment.  

The concept of Probable Maximum Loss stems from fire insurance where it has 

been noticed that total losses were very infrequent in categories where there are public 

fire protection and fire-resistive structures. Bennett (1992) defines the PML as “the 
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largest possible loss that may occur, in regard to a particular risk, given the worst 

combination of circumstances”. Wilkinson (1992) and Kremer (1990, 1994) suggest to 

express the PML as either (1 ) [ ]nE Mθ− or [ ]E M VarMn nθ+ where 

m ax( , , ..., )1 2M X X Xn n=  is the maximum of n claims and θ a safety loading 

coefficient. Cebrian et al (2004) obtain the PML by solving the following equation 

[ ] 1 ,P M PM Ln εε≤ = −  

for some 0ε > . In other words, the PML can be considered as a high quantile of the 

maximum of a random sample of size n , that is  

1PM L (1 ),FM n
εε

−= −  

 This latter formula can be estimated using two different methodologies. 

Wilkinson (1992) advocates the use of order statistics, while Kremer (1990, 1994) and 

Cebrian et al (2004) suggest a methodology rooted in extreme value theory.  Details of 

the suggested model are as follows: 

It is assumed that for a specific organization, each business line/event type has an 

explicit random truncation point distribution. It is further assumed that a PML could be 

assigned to each business line/event type, and this PML will reflect the size and the 

quality of internal control of the firm. Thus, to derive the scale and location parameters of 

the distribution function of the truncation point, it suffices to match percentiles at two 

different losses.  

Let us consider a business line/event type with its specific PML. Let Fs  denote 

the distribution function of the truncation point of the specific organization and Fi  that of 

an industry-wide organization. It is worth noting that Fi  is derived from the initial 



 26

maximum likelihood estimation using the industry-wide operational losses. Let 

( )F PMLs and ( )F PMLi denote the probability of disclosure of the PML according to 

these two distributions. If the value of ( )F PMLs  is set at a certain level, according to 

expert judgment (depending on the firm’s size and quality of internal risk control), and if 

for example, it is further assumed that the median of the two distributions are similar, 

then one is in position to derive the parameters of the specific truncation point and 

therefore, compute the underlying loss severity parameter using the maximum likelihood 

estimation approach. If ( ) ( )F PML F PMLs i≥ , then the underlying loss severity parameter 

is lower than that of an industry-wide organization and if ( ) ( )F PML F PMLs i≤  , the 

underlying loss severity parameter is greater that that of an industry-wide organization. 

 

4.2 Frequency distribution. 

In this study, simplicity demands that one uses the Poisson distribution to describe loss 

occurrences. Indeed, above a high threshold, the Peak Over Threshold (POT) model 

assumes that loss occurrences are Poisson distributed. To calibrate this distribution, one 

uses the fact that large international active banks incur an average of 50 to 80 losses 

above $1 million each year. (Fontnouvelle et al , 2003). Further investigation of 

frequency distributions in the context of common Poisson shock model (Lindskog et al, 

2001) is left for future work. 

 

4-3 Modeling the dependence structure using copulas. 

As a tool to model joint effects of multiples risks, the concept of copula has recently 

attracted extensive attention from the financial community. This subject is relevant to 
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operational risk practitioners since within the BCBS framework, banks are required to 

calculate the capital charge for each of the 56 business lines/event types and use a 

dependence structure model to aggregate these values. Simply stated, a copula function 

links univariate marginal distributions to their joint distribution. A theorem due to Sklar 

(1959) states that if 1( ,..., )dX X X=    is a random variable with joint distribution 

function F , then there exists a copula function C such that  

 1 1 1( ,..., ) ( ( ),..., ( ))d n dF x x C F x F x=  
 
where iF is the ith marginal distribution function, for 1,2,...,i d= . 

For absolutely continuous univariate marginals, there is a unique copula C  such that  

 1 1
1 1 1( ,..., ) ( ( ),..., ( ))d d dC u u F F u F u− −=  

where  

 { }1( ) inf : ( ) , 1,...,i i i iF u x F x u i d− = > =  
 
are the marginal quantile functions. 
 

Recent developments on copulas can be found in Embrechts et al (1999), 

Lindskog (2001) and Nelsen (1999). Following is a brief presentation of some useful 

families of copulas that are used in this paper. 

Tang et al (2004) describe three classes of copulas that are generally used in 

finance and insurance. These are the copulas of extreme dependence, the Archimedean 

copulas and the elliptical copulas. The copulas of extreme dependence include the 

independence copula, the Frechet lower bound for copula and the Frechet upper bound 

for copula. The independence copula or product copula ( )uΠ  is expressed as  

 1( ) ... du u uΠ = . 
 
while, the Frechet bounds for copulas are  
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 1( ) min( ,..., )dM u u u=  
and  

 1( ) ( ... 1,0)dW u max u u d= + + − +  
 
with  

 ( ) ( ) ( )W u C u M u≤ ≤  
 
Note that for 2,d ≥  ( )M u defines a copula, called the comonotonic copula that describes 

a perfect positive dependence structure, while for 2d > , ( )W u  is no longer a copula. 

Archimedean copulas or explicit copulas constitute the second class of copulas. They are 

based on one generator function, and as such, have simple closed forms (Aas, 2004). This 

class of copulas allows for asymmetry, and as a result, exhibits greater dependence in the 

negative tail or in the positive tail. However these copulas generally fail to account for 

multivariate dependence structure as they have one single parameter to describe the 

dependence. Examples of Archimedean copulas include the Clayton copula and the 

Gumbel copula. Elliptical copulas or implicit copulas comprise the third class of copulas. 

Typically, elliptical copulas are copulas implied by elliptical distributions. Well-known 

examples of elliptical distributions include multivariate normal, t-student, and logistic 

distributions. Elliptical copulas allow for joint extreme events, but fail to account for 

asymmetries. In addition, they do not have a simple close form. Regardless of these 

shortcomings, they are becoming more and more popular for empirical exercises as they 

are remarkably easy to simulate. Tang et al (2004) also acknowledge the flexibility of this 

family of copulas to account for differences in pair-wise dependence structure by using a 

variance-covariance framework. 

The expressions of the aforementioned copulas are as follows: 
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For the normal copula: 

 ( )1 1
1( ) ( ),..., ( )d

R dC u u u− −= Φ Φ Φ  
 
where d

RΦ denotes the joint distribution function of the d-dimensional multivariate 

standard normal distribution function with linear correlation matrix R . 

In the bivariate case, the copula expression is:  

 
1 1( ) ( ) 2 2

2 2

1 2( , ) exp
2 (1 ) 2(1 )

u v s st yC u v dsdtρ
ρ

π ρ ρ

− −Φ Φ

−∞ −∞

⎧ ⎫− +
= −⎨ ⎬− −⎩ ⎭
∫ ∫  

 
where ρ denotes the linear correlation coefficient of the bivariate normal distribution. 
 
 
The expression of the Student’s t-copula is  

    ( )1 1
, 1( ) ( ),..., ( )d
R dC u t t u t uν ν ν

− −=  

where ,
d

Rtν  denotes the joint distribution function of the d-dimensional multivariate 

Student’s t-distribution function with linear correlation matrix R  and ν  degrees of 

freedom. 

In the bivariate case, the copula expression is:  

1 1 ( 2) / 2( ) ( ) 2 2

, 2 1/ 2 2

1 2( , ) 1
2 (1 ) (1 )

t u t v s st yC u v dsdt
ν ν

ν

ρ ν
ρ

π ρ ν ρ

− − − +

−∞ −∞

⎧ ⎫− +
= +⎨ ⎬− −⎩ ⎭
∫ ∫  

 
where ρ denotes the linear correlation coefficient of the bivariate Student’s t-distribution 

function with ν  degrees of freedom. 

 
The Clayton copula has the following expression: 
 
 1/( , ) ( 1)C u v u vδ δ δ

δ
− − −= + −  

 
where 0 δ< < ∞  denotes a parameter controlling the degree of dependence. 
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The Gumbel copula can be expressed as: 
 

( )1/( , ) exp (( log ) ( log ) )C u v u vδ δ δ
δ = − − + −  

 
where1 δ≤ < ∞  denotes a parameter controlling the degree of dependence. 
 

Following is the summary of the algorithm that simulates a vector 1( ,..., )dx x  with 

marginal 
1
,...,

dx xF F and the associated elliptical copula C  

For the normal copula, the ith simulated loss is  

( )( )1 1 1
1( ( ),..., ( )

ii x i dx F A u u− − −= Φ Φ Φ  

where ( )uΦ denotes the standard normal cumulative distribution, A  the lower triangular 

matrix obtained from the Choleski decomposition of the covariance matrix of  F , and iu  

for 1 i d≤ ≤ , are d independent standard uniform variables. 

For the Student’s t-copula, the ith simulated loss is  

( )1 1 1
1( ( ),..., ( )

ii x i dx F t A u u
Sν
ν− − −

⎛ ⎞⎛ ⎞
= Φ Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

where tν is the Student’s t cumulative distribution function with ν  degrees of freedom, S  

a random number generated from the chi-square distribution random variable 

2 ( )χ ν independent from each of the standard normal variables 1( )iu−Φ . 

 It is worth noticing that the normal copula transformation gives rise to the 

simulation of random variables under the Wang Transform. 

By setting  

1 1 1
1( ( ),..., ( )) ( )i d iA u u u λ− − −Φ Φ = Φ +  

where 1( )λ α−= Φ , with α  denoting the specified rating target or confidence level. 
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One gets  

( )( )1 1( )
ii x ix F u λ− −= Φ Φ +  

 
This paper will compute the capital charge in the context of Elliptical copulas. 

The case of Archimedean copulas will be investigated in future work. 

With regard to operational risk, Frachot et al (2004) point out that the most 

convenient and cheapest way to model correlation between aggregate losses is to assume 

that aggregate loss correlation is essentially driven by the underlying correlation between 

loss occurrences. The authors show that in this specific case, the correlation between two 

aggregate losses connected to two classes i  and j  is such that 

 0 cor( , ) cor( , ) 1i j i jAggL AggL N N≤ ≤ ≤  
 
where iN  and jN  denote loss frequencies of classes i  and j . 

For example, in the case where the loss severity distribution is log-normally 

distributed, the authors prove that the aggregate loss correlation is a decreasing function 

of the kurtosis or the heaviness of the tail of the distribution. Therefore, aggregate loss 

correlations for large losses may be very small even in the case where loss occurrence 

correlation is high. It was shown that in the models dealing with highly-correlated losses, 

correlation between aggregate losses might be less than 10%. As indicated in the same 

paper, the maximum aggregate loss correlation for Credit Lyonnais is less than 4%.  

The following subsection develops a framework used to derive the resulting 

capital charge, taking into account all possible dependence structures.  As a matter of 

fact, one may select the copula that minimizes the distance to the empirical copula of the 

data (Romano, 2002). It is argued that for each event type subclass, an accurate 
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estimation of the degrees of freedom as well as of the empirical copulas is unfeasible due 

to lack of sufficient data. Therefore, one should account for the different types of copulas 

considered to get the empirical distribution of the “comprehensive” capital charge. In this 

setting, 13 dependences structures are explored. These include the comonotonic 

dependence, the Student’s t-copula with t ranging from 1 to 10, the normal copula and the 

independence copula. The framework is that of the finite mixture distribution, especially 

the component-mix distribution in which the resulting capital charge is expressed as a 

mixing weighted capital charges. Recent literature dealing with distributions formed from 

component-mixes can be found in Rose et al. (2002) and Titterington et al. (1985). 

Specifically, component mix distributions are generated from linear combinations 

of distributions. Following Rose et al (2002), in the case of a discrete random variable 

iX , let ( ) ( )i if x P X x= =  for 1,..., ,i n= denote the probability mass function and let 

iπ denote a parameter such that 0 1iπ< <  and 
1

1
n

i
i
π

=

=∑ .  Then, the n-component-mix 

random variable is defined as  

 1 1~ ... n nX X Xπ π+ +  
 
and its probability mass function is expressed as  

 
1

( ) ( )
n

i i
i

f x f xπ
=

=∑  

The parameters  iπ  for 1,..., ,i n=  are defined as the mixing weights and the functions if  

for 1,..., ,i n=  are called the component densities. 

The next section presents the results related to the estimation of the loss severity 

distribution for industry-wide banks and insurers and for specific banks and insurers. The 
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sensitivity of the capital charge to the choice of copulas is investigated and finally, the 

empirical probability distribution function of the resulting capital charge is derived.  

5 – Results 
 
 
5-1  Loss severity 
 
 
The period of study ranges from 1960 to 2002 and is conducted for US banks and 

insurers for all business lines and event types combined, for business units and event type 

subclasses, and finally for business lines and event type subclasses. Banks’ activities are 

divided into 3 business units according to BCBS classification and each business unit is 

analyzed as a whole and according to 3 event type subclasses. These event type 

subclasses, as analyzed in the descriptive statistics section, include CPBP, internal fraud-

EPWS and all other event types. For insurers, the calibration is performed for all event 

types combined and for each event type subclass.  

Table 5.1 and Figure 5.1 give the loss severity and the truncation point 

distribution parameters for each business unit. The results indicate that the constant and 

known assumption regarding the truncation point, yields the highest level of the severity 

parameter while the logistic assumption gives rise to the lowest level. Within model 1, 

the constant and known assumption does not account for reporting bias and assigns a 

uniform weight to all losses. Further developments (Table 5.7) show that this line of 

reasoning leads to a higher level of capital charges and to the belief that operational risk 

is extremely risky. 

The most risky business unit is investment banking that comprises two business 

lines, namely corporate finance and trading and sales. Tail coefficients (all above 1) are 
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2.550, 1.1199 and 1.232 for the constant and known assumption, the logistic assumption, 

and the normal assumption, respectively. The most risky event type is CPBP, especially 

for investment banking.  

As to insurers, tail parameters except for the constant and known assumption are 

less than 0.6. This range of tails lead to the conclusion that insurers’ operational risk is 

less risky than that of banks. 

The log likelihood of the three models suggests that the logistic distributional 

assumption most accounts for the reporting bias. But since the log likelihood yields a bias 

in comparing different distributions, the Akaike information Criterion (AIC) is computed 

and the likelihood ratio test is performed to acknowledge the fit of the logistic 

distribution (Werneman, 2005).  The AIC is defined as follows: 

 2 ln 2AIC L q= − +  
 
where ln L is the log-likelihood function and q is the number of parameters of the 

distribution fitted. The smaller the AIC, the better the model fits the data. Carriere (1998) 

defines the test statisticT  for the likelihood ratio test as   

 
1 2 1 2

2 2F F F FT AIC AIC q q= − − +  
 
where, 1F  denotes the distribution of the null hypothesis 0H , and 2F  the distribution of 

the alternate hypothesis Hα ,  
1Fq  and 

2Fq the number of parameters of 1F  and 2F , 

respectively. 0H  is rejected in favor of Hα  whenever 
2

2 ( , )FT qχ α>  where α  is the 

confidence level. 
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Table 5.2 and Figure 5.2 provide the loss severity and the truncation point 

distribution parameters analyzed by business lines. The Trading and sales unit appears to 

be the most risky, followed by agency services. 

 Tables 5.3 and 5.4 provide the results of the severity calibration by firm size. 

They indicate that small firms, or firms with revenue below the median, have the highest 

level of the tail parameter. These results are in line with those obtained by Shih et al 

(2001).  

The severity parameter of a specific organization is calibrated using the 

methodology previously described. Table 5.5 provides the results of this calibration. The 

PML along with its probability is set to $1000 and 0.99, respectively. The resulting tail 

parameter is 0.472.  

For the most prominent business lines and event types, Figures 5.3 to 5.12 show 

the Quantile-Quantile plots, the observed severity distribution and the underlying severity 

distribution. CPBP QQ-plot shows a slight decline in fit towards the tail, while retail 

banking display a substantial decline in fit. As to insurers, the QQ-plot cannot be 

displayed since the acceptance-rejection algorithm used to simulate the observed loss 

severities fails to converge.  The Kolmogorov-Smirnov and Anderson-Darling tests have 

not been performed because these tests are not appropriate for distributions of excesses 

over some thresholds (Moscadelli, 2004) 

Figures 5.13 and 5.14 present the graph of the distribution function of the random 

truncation point for both the specific organization and the industry-wide organization. 
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5-2 Capital charge 
 
Value at Risk at 99.9% rating target is the risk measure required by BCBS. This paper 

aims at deriving the empirical distribution of the aggregated capital charge so as to reflect 

the distribution of estimates of the underlying parameters and randomness of the Monte 

Carlo simulations. Specifically, 1 million of aggregate marginal losses and 150 000 

aggregate dependent losses are simulated. Aggregate loss sample correlations are 

computed from historical data and adjusted according to expert judgment. Typically, 

when sample aggregate loss correlations are negative, they are adjusted to 4% and when 

they are greater than 10%, they are lowered to 10%. Table 5.6 shows the sample 

aggregate loss correlations with their adjustments. For the base scenario, the estimates are 

assumed to be non-random. Other scenarios reflecting estimate and correlation 

uncertainty will be examined in future work.  The computer program has been designed 

accordingly10. Figures 5.15, 5.16, and 5.17 present the distribution of the capital charges 

of the three event type subclasses, while Figure 5.18 gives the distribution of the 

aggregated capital charge under Student’s t-copula with one degree of freedom. In all 

cases, distributions are approximately normal. Figure 5.19 plots the aggregated capital 

charge in terms of the degrees of freedom for elliptical copulas. It is noticed that the level 

of capital charge is inversely related to the number of degrees of freedom. The Cauchy 

copula gives rise to the highest aggregated capital charge, while the normal copula yields 

the lowest aggregated capital charge. For banks and insurers, Tables 5.10 and 5.11 give 

the aggregated capital charge along with the capital saving for both an industry-wide 

organization and a specific organization. The yearly loss frequency is assumed to be 

                                                 
10 A simulated data set accompanied by the Mathematica and C# programs will be made available upon 
request to the author. 
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equal to 50. The highest capital saving is achieved through the independence copula case. 

In terms of percentage, the saving ranges from 6% to 10% for banks, and from 3% to 4% 

for large insurers. For the specific insurer it ranges from 5% to 10%. For large 

organizations, the capital savings are less significant for insurers since, due to lack of 

sufficient data, two event type subclasses was considered compared to three for the 

banks. This result was expected since the diversification benefit increases with the 

number of business line/event types used. These levels of capital charge need to be 

compared with those obtained by combining all business lines/event types. Table 5.9 

allows such a comparison.  For a typical large bank, when all business lines and event 

types are combined, the capital charge amounts to $3,460 million. In the case where 

bank’s activities are divided into three lines, the capital charge for the normal copula 

amounts to $6,324 million. 

Table 5.12 provides the descriptive statistics for the distribution of the aggregated 

capital charge.  The amount obtained under the Cauchy copula ranks first for most 

locations, scales, and percentile measures. The skewness and kurtosis excess coefficients 

are close to those of normal distribution.  

 The resulting capital is then calculated by weighting the distributions of the 

capital charges derived by assuming various dependence structures. It is argued that 

mixing weights can be assigned to each organization, and that the quality of a firm’s risk 

management practices determined these weights. The illustrative case assumes that the 

weight for each dependence structure is 8% except for the comonotonic dependence. As 

to this latter case, the weight is 4%. Table 5.13 provides these weights. To get the 

empirical distribution of the weighted capital charges, 1 million of n-component mix 
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random variables are simulated (n=13). Figure 5.20 and 5.21 show the histograms of the 

mixing weighted capital charge for both the industry-wide organization and the specific 

organization. Table 5.14 provides the descriptive statistics. It shows that for the industry-

wide bank, the mixing weighted capital as measured by the mean of the distribution is 

$6,433 million while for the specific organization, it amounts to $443 million.  

 

6 - Conclusion 

This study clearly reveals that operational risk is a major risk class, as evidenced by the 

level of capital charge that banks and insurers need to hold. The results suggest that the 

level of operational risk capital charge could exceed $6 billion for large internationally 

active banks, and $600 million for large insurers. These amounts are in line with those 

disclosed by these institutions, that is, 2-7 billions for banks and 2% of gross premium for 

insurers. They are also consistent with the amounts estimated in Fontnouvelle et al (2003) 

for banks. Consequently, all of this above validate the random truncation assumption 

further. However, it must be accompanied by a sound approach that deals with scaling 

issues. Therefore, the appropriate methodology that banks and insurers need to use to 

rescale the severity distribution is a crucial and promising line for future research. So far, 

due to the lack of large loss data set, the scaling formulas that have been suggested are 

still in their infancy. 

This study also indicates that operational risk is driven by CPBP and internal 

fraud and that the quality internal control environment highly impacts the loss severity 

which in turn significantly drives the capital charge.  Thus, another crucial area for future 

research is the quantification of bank and insurer internal risk control environments. It is 
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worth mentioning that BCBS through the second pillar (supervisory review) and the third 

pillar (market discipline) provides an appropriate framework for this exercise. 

The capital charge is also driven by assumptions about the dependence structure 

and the number of business lines/event types involved. As a result, BCBS needs to 

provide incentives to banks that refine their operational risk classification scheme. 

 Throughout this paper various theories have been tested. These include the 

stochastic truncation model, the extreme value theory and copulas. All these theories are 

directly and significantly relevant to the management of operational risk envisioned as a 

tool to reduce volatility in earnings and thereby, increase shareholder value. 
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Descriptive Statistics of Fitch Dataset 

1- Analysis of Contributors’ number of losses and Truncation Point 

 

Table 1.1  US Bank and Insurers - Number of Losses per Contributor  

  Banks Insurers 
Number of 
Losses Per 
contributor Parent Organization Organization Parent Organization Organization 

  Number 
Percentage 

% Number 
Percentage 

% Number 
Percentage 

% Number 
Percentage 

% 
1 791 79 1026 82 217 72 305 80 

 2  -   9 187 19 202 16 81 27 76 20 
>9 20 2 16 1 4 1 0 0 

Total 998 100 1244 100 302 100 381 100 
 

 

Table 1.2 US Bank Contributors’ Truncation Point ($ million) by Business Lines 
 

 Business Lines 

  COFI TRSA REBA COBA PASE AGSE ASMA REBR All  
 Number of Contributors 47 96 599 237 21 52 121 242 1,244 

Minimum 1 1 1 1 1 1 1 1 1 
Maximum 213 1,899 1,980 453 209 536 417 254 1,980 

Mean 16 114 18 24 20 24 32 10 23 
Standard Deviation 6 18 9 7 7 9 8 5 10 

Skewness 4 5 18 5 3 6 4 7 15 
KurtosisExcess 21 21 378 29 10 38 16 59 259 

 
COFI: Corporate Finance-TRSA: Trading & Sales- REBA Retail Banking- COBA: Commercial Banking- PASE: Payment & Settlement  
AGSE: Agency Services – ASMA: Asset management- REBR Retail Brokerage 
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Table 1.3 US Bank Contributors’ Truncation Point ($ million) by Event Types 

 
Loss Event Types 

  DAPA EXFR EPWS INFR EDPM CPBP BDSF 
 Number of Contributors 6 272 53 436 79 598 7 

Minimum 1 1 1 1 1 1 1 
Maximum 89 242 52 1,899 417 1,980 363 

Mean 23 13 9 27 15 30 61 
Standard Deviation 6 5 3 12 7 11 12 

Skewness 2 5 2 12 7 12 2 
KurtosisExcess 1 32 6 153 49 175 2 

 
DAPA: Damage to Physical Asset- EXFR: External Fraud- EPWS: Employment Practices & Workplace Safety- INFR: Internal Fraud- 
EDPM: Execution, Delivery & Process Management - CPBP: Clients, Products & Business Practice BDSF: Business Disruption & 
System Failure 

 

 

Table 1.4 US Insurer Contributors’ Truncation Point ($ million) by Event Types 
 

  Loss Event Types 

  DAPA EXFR EPWS INFR EDPM CPBP BDSF ALL 
 Number of Contributors 1 19 17 71 53 264 1 381 

Minimum 208 1 1 1 1 1 341 1 
Maximum 208 295 94 420 92 1,094 341 599 

Mean 208 21 21 21 8 38 341 25 
Standard Deviation   8 5 8 4 10   8 

Skewness   4 2 5 4 7   5 
KurtosisExcess   14 1 31 14 69   37 

 

 
Table 1.5 US Bank & Insurer Contributors’ Truncation Point   All Event Types 
Summary Statistics  
 
  Percentile($ million) 

  25% 50% 75% 95% 

US Bank  2 4 12 80 
US Insurer  2 6 19 120 
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Figure 1.1 US Banks - Histogram of Contributor’s Log-Truncation-Point. - All  
Business Lines and All Event Types 
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Figure 1.2 US Insurers - Histogram of Contributor’s Log-Truncation-Point - All 
Business Lines All Event Types 

1 2 3 4 5 6
Contributor's Log−Truncation−Point

10

20

30

40

50
Frequency

 



 43

 

2- Analysis of  Exposure = Revenue ($Million) 

Table 2.1  Distribution of Total Revenue   
US Banks and insurers’ total revenue classified into four clusters, three sizes: Small, 
Medium and Large  
 
  US Banks US Insurers 

  
No 

Exposure  
Reported  

Cluster 
2 

 Small 
Size 

Cluster  
3 

Medium 
Size 

Cluster 
4  

Large 
Size 

No 
Exposure  
Reported 

Cluster 
2  

Small 
Size 

Cluster 
3 

Medium 
Size 

Cluster 
 4 

 Large 
Size 

Number of 
Contributors 723 383 113 26 213 109 50 10 

Mean    3,458 33,118 109,991   3,995 25,610 81,698 
Min   1 18,631 72,772   17 14,978 60,391 
Max   18,342 65,601 192,390   13,958 49,221 116,729 

Std    4,547 12,749 33,603   3,907 7,774 18,824 
Skewness   1 1 1   1 1 1 

Kurtosis Excess  1 0 1   0 2 -1 
 

 

Table 2.2  Distribution of Total Revenue   
US Banks and insurers’ total revenue by Quantile 
 

  

Total 
Number of 

Losses  
Total With 

Revenue Reported Min 25% Quantile 50% Quantile 75% Quantile Max 
US Banks 1989 891 1 927 7,793 24,695 192,390 

US Insurers 530 250 17 3,055 9,241 26,158 116,729 
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3- Analysis of Aggregate loss amounts and Occurrences  

Figure 3.1 US Banks  Yearly Aggregate Losses By Business Lines & Settlement Year 

0

1000

2000

3000

4000

5000

6000

7000

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Years

Y
ea

rl
y 

A
gg

re
ga

te
 L

os
se

s

Total Business Lines 1- COFI Corporate Finance 2- TRSA Trading & Sales
3- REBA Retail Banking 4- COBA  Commercial Banking 5- PASE  Payment & Settlement
6- AGSE  Agency Services 7- ASMA Asset management 8- REBR  Retail Brokerage

 



 45

Figure 3.2  US Banks - Yearly Aggregate Losses By Event Types & Settlement Year  
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Figure 3.3 US Banks - Yearly Aggregate Losses By CPBP Sub Event Types & Settlement Year   
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Figure 3.4 US Insurers - Yearly Aggregate Losses By  Event Types & Settlement Year  

 

 

 

 

 

 

 

 

Figure 3.5  Yearly Aggregate Losses By CPBP Sub Event Types & Settlement Year – US Insurers  

Figure 3.3 Yearly Aggregate Losses By CPBP Sub Event Types & Settlement Year  – US Banks  
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Figure 3.5  US Insurers - Yearly Aggregate Losses By CPBP Sub Event Types & Settlement Year  
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Figure 3.6  US Banks & Insurers - Yearly Aggregate Loss by Event Types & Settlement Year  
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Figure 3.7  US Banks - Yearly Aggregate Loss Amounts & Occurrences by Settlement Year  

 

 

 

 

 

 

Yearly Aggregate Loss Amount & Occurrences – Insurance Companies 
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Figure 3.8  US Insurers - Yearly Aggregate Loss Amounts & Occurrences  Settlement Year  
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4- Analysis of individual losses 

Table 4.1 US Banks - Total Loss Amount by Business Lines & Event Types  

Banking 
Internal 
Fraud 

External 
Fraud 

Employment Practices 
& Workplace Safety 

Clients, Products 
& Business 
Practices 

Damage to 
Physical 
Assets 

Business 
Disruption & 
System Failures 

Execution, Delivery 
& Process 
Management Total 

Corporate Finance 1,426 0 8 1,214 0 0 4 2,652 
Trading & Sales 6,670 0 5 7,232 0 363 223 14,494 
Retail Banking 3,623 1,830 292 13,409 22 3 990 20,169 
Commercial Banking 3,605 2,843 327 3,491 213 128 42 10,649 
Payment & Settlement 61 8 0 304 89 8 4 474 
Agency Services 123 758 3 1,296 0 0 362 2,542 
Asset management 2,046 204 111 3,249 0 0 532 6,143 
Retail Brokerage 1,072 52 214 7,383 0 16 54 8,791 
Total 18,626 5,695 961 37,579 324 519 2,212 65,915 

 

Table 4.2 US Banks - Loss Occurrences by Business Lines & Event Types  

Banking 
Internal 
Fraud 

External 
Fraud 

Employment Practices 
& Workplace Safety 

Clients, Products 
& Business 
Practices 

Damage to 
Physical 
Assets 

Business 
Disruption & 

System Failures 

Execution, Delivery 
& Process 

Management Total 
Corporate Finance 12 0 1 62 0 0 1 76 
Trading & Sales 48 0 2 60 0 1 8 119 
Retail Banking 272 191 20 271 3 1 51 809 

Commercial Banking 74 127 14 101 3 2 8 329 
Payment & Settlement 6 2 0 13 1 1 1 24 

Agency Services 13 3 1 44 0 0 4 65 
Asset management 40 9 3 82 0 0 5 139 
Retail Brokerage 69 12 33 293 0 3 18 428 

Total   534 344 74 926 7 8 96 1989 
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Table 4.3 US Insurers - Loss Occurrences  by Business Lines & Event Types   

  
Internal 
Fraud 

External 
Fraud 

Employment 
Practices & 

Workplace Safety 

Clients, 
Products & 
Business 
Practices 

Damage to 
Physical 
Assets 

Business 
Disruption & 

System 
Failures 

Execution, 
Delivery & 

Process 
Management Total 

Loss Amount 1,616 411 573 19,214 208 341 648 23,011 
Loss Occurrences 74 21 20 344 1 1 68 529 

 

 

 

 



 54 

Table 5.1  US Banks & Insurers –  Industry-Wide Organization Severity Analysis by Business Units and Event Types 
Impact of the Random Truncation Distribution on the Tail: non Random & Constant, Logistically Distributed and Normally Distributed.  
 

Business Units Event Types Tail b Scale sigma Location mu LogLikelihood AIC # Loss Max 
    Constant  Logistic Normal Logistic Normal Logistic Normal Constant LogisticNormalConstant LogisticNormal   Loss 
US Banks                       

All Business Units All Event Types 1.826 0.750 0.886 0.934 2.177 4.481 4.481 -3187 -3107 -3116 6376 6220 6235 1989 2243
    0.052 0.086 0.040 0.104 0.108 0.417 -             
  CPBP 2.031 0.848 0.935 0.890 1.835 3.807 3.807 -1582 -1518 -1522 3166 3042 3048 926 2243
    0.091 0.111 0.050 0.082 0.102 0.513 -             

  Internal Fraud - 
EPWS 1.648 0.778 0.908 1.054 2.429 4.581 4.581 -936 -919.74 -921.9 1873 1845 1848 608 1899 

    0.083 0.185 0.080 0.257 0.266 1.040              
  Other Event Types 1.560 0.352 0.805 0.432 2.621 5.636 5.636 -657 -645.84 -650.11 1316 1298 1304 455 535.8 
    0.085 0.194 0.118 0.287 0.446 0.357 -             

Investment Banking All Event Types 2.550 1.199 1.232 0.887 1.611 3.105 3.105 -378 -356 -356 757 717 716 195 1899
    0.276 0.288 0.112 0.116 0.165 1.018 -             
  CPBP 2.535 1.041 1.099 0.763 1.464 3.204 3.204 -235 -217 -218 473 440 439 122 1825
    0.369 0.277 0.126 0.106 0.160 0.944 -             

Banking All Event Types 1.755 0.665 0.838 0.841 2.176 4.682 4.682 -1917 -1869 -1875 3836 3743 3755 1227 2000
    0.062 0.104 0.052 0.140 0.144 0.444 -             
  CPBP 2.079 0.978 1.018 0.887 1.648 3.128 3.128 -743 -710 -710 1488 1425 1425 429 2000
    0.140 0.171 0.069 0.088 0.128 0.750 -             

Other Business Lines All Event Types 1.733 0.674 0.840 0.848 2.146 4.455 4.455 -879 -857 -860 1759 1720 1724 567 2243
    0.091 0.136 0.075 0.175 0.210 0.666 -             
  CPBP 1.813 0.634 0.831 0.757 2.037 4.468 4.468 -598 -579 -582 1198 1164 1168 375 2243
    0.121 0.134 0.088 0.159 0.219 0.617 -             

US Insurers                       
 All Event Types 2.184 0.479 0.896 0.535 2.237 5.471 5.471 -942 -900 -912 1887 1806 1828 529 2272
   0.129 0.084 0.091 0.098 0.200 0.294 -             
  CPBP 2.540 0.598 0.857 0.591 1.743 4.862 4.862 -665 -609 -616 1331 1225 1236 344 2272
    0.220 0.101 0.079 0.088 0.118 0.331 -            
  Other Event Types 1.522 0.127 1.064 0.138 4.639 6.293 6.293 -263 -259 -262 527 524 529 185 420 

 
Investment Banking includes two business lines: Corporate Finance and Trading and Sales. Banking includes: Retail Banking, Commercial Banking, Payment & Settlement and Agency Services. 
Other business lines include Asset Management and Retail brokerage. EPWS: Employment Practices and Workplace Safety.  
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Table 5.2  US Banks & Insurers –  Industry-Wide Organization Severity Analysis by Business Lines and Event Types 
Impact of the Random Truncation Distribution on the Tail: non Random & Constant, Logistically Distributed and Normally Distributed.  
 
 
Business Lines Event Types Tail b Scale sigma Location mu LogLikelihood AIC # Loss Max 
    Constant  Logistic Normal Logistic Normal Logistic Normal Constant LogisticNormalConstant LogisticNormal   Loss 

Corporate Finance All Event Types 2.106 0.930 0.961 0.644 1.191 2.507 2.507 -133 -122 -122 267 250 248 76 990 
   0.378 0.249 0.13 0.125 0.166 0.857 -            
  CPBP 1.994 0.656 0.722 0.550 1.156 3.054 3.054 -105 -94 -94 212 194 192 62 299 
   0.425 0.237 0.127 0.127 0.164 0.802 -            

Trading & Sales All Event Types 2.834 0.982 1.084 0.914 1.930 4.813 4.813 -243 -227 -227 488 461 459 119 1899
   0.407 0.374 0.154 0.243 0.232 1.213 -            
  CPBP 3.092 1.040 1.149 0.760 1.580 4.048 4.048 -128 -114 -115 257 235 234 60 1825
   0.716 0.422 0.196 0.165 0.206 1.123 -            

Retail Banking All Event Types 1.592 0.755 0.866 1.046 2.339 4.253 4.253 -1185 -1166 -1169 2372 2339 2342 809 2000
   0.066 0.149 0.066 0.210 0.230 0.910 -            
  CPBP 2.034 1.005 1.056 1.055 1.985 3.459 3.459 -463 -450 -450 929 906 905 271 2000
   0.162 0.264 0.099 0.165 0.234 1.388 -            

Commercial Banking All Event Types 2.103 0.540 0.788 0.579 1.779 4.741 4.741 -574 -539 -544 1149 1084 1092 329 766 
   0.167 0.144 0.086 0.150 0.158 0.419 -            
  CPBP 2.251 0.810 0.860 0.672 1.337 3.455 3.455 -183 -167 -166 368 339 337 101 415 
   0.365 0.305 0.121 0.140 0.161 0.985 -            

Payment & 
Settlement All Event Types - - - - - - -         24 209 

Agency Services All Event Types 2.073 0.962 1.004 0.893 1.671 3.285 3.285 -112 -107 -107 227 221 219 65 536 
   0.358 0.536 0.182 0.253 0.340 2.292 -            
                      

Asset Management All Event Types 2.248 0.782 0.918 0.829 1.911 4.490 4.490 -252 -239 -240 505 485 484 139 967 
   0.274 0.349 0.138 0.310 0.258 1.220 -            
  CPBP 2.291 0.670 0.850 0.699 1.799 4.655 4.655 -150 -141 -142     82 440 
   0.380 0.424 0.173 0.394 0.300 1.234 -            

Retail Brokerage All Event Types 1.565 0.573 0.778 0.734 2.110 4.365 4.365 -620 -605 -608 1242 1217 1221 428 2243
   0.092 0.107 0.085 0.150 0.257 0.584 -            

  CPBP 1.679 0.590 0.805 0.723 2.063 4.369 4.369 -445 -432 -435 892 871 874 293 2243
   0.123 0.119 0.099 0.151 0.270 0.646 -             
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Figure 5.1 - US Banks 
Tail Parameter by Business Units & Random Truncation Point Distributional Assumption 
Ind                                                                                                                                                                                                                                                                      
ustry-wide organization  
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Figure 5.2 - US Banks 
Tail Parameter by Business Lines & Random Truncation Point Distributional Assumption 
Industry-wide organization  
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Figure 5.3 US Banks - Quantile-Quantile Plot All Business Lines All Event Types 
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Figure 5.4 US Banks - Observed Severity Distribution and Underlying Severity 
Distribution. All Business Lines All Event Types. 
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Figure 5.5 US Banks - QQ Plot  CPBP 
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Figure 5.6 US Banks - Observed Severity Distribution and Underlying Severity 
Distribution. CPBP. 
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Figure 5.7  US Banks - QQ Plot  Internal Fraud  
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Figure 5.8 US Banks - Observed Severity Distribution and Underlying Severity 
Distribution. Internal Fraud - EPWS. 
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Figure 5.9 US Banks- Observed Severity Distribution and Underlying Severity 
Distribution. Retail Banking. 
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Figure 5.10 US Banks- Observed Severity Distribution and Underlying Severity 
Distribution Retail Banking. 
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Figure 5.11 US Banks- Observed Severity Distribution and Underlying Severity 
Distribution. Retail Brokerage 
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Figure 5.12 US Banks- Observed Severity Distribution and Underlying Severity 
Distribution Retail Brokerage. 
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Table 5.3 – US Banks & Insurers: Severity by Size (1)  
All Business Lines and Event Types 
 

 Bellow Median Revenue Above Median Revenue 

  
Number of 

Losses 
Severity 

Parameter 
Maximum 
Loss($M) 

99.95 Quantile of 
the Underlying 
Severity ($M) 

Number of 
Losses 

Severity 
Parameter 

Maximum Loss 
($M) 

99.95 Quantile of the 
Underlying Severity 

($M) 

US Banks 445 0.759 2,243 320 446 0.6794 1,824 175 

US Insurers 125 0.6108 2,272 104 125 0.512 1,852 49 
 
 
Table 5.4 – US Banks & Insurers: Severity by Size (2)  
All Business Lines and Event Types 
 

 US Banks US Insurers 
  Small Size Medium Size Large Size Small Size Medium Size Large Size 

Number of  Losses 582 243 64 144 88 11 
Severity Parameter 0.878 0.497 0.322 0.571 0.598  

Maximum Loss ($M) 2,243 631 363 2,272 1,852 198 
99.99% Quantile of 

Underlying Severity ($M) 790 44 12 76 94  

 
Table 5.5 – Determination of the Severity of a Specific Firm 
 
    Severity Distribution Parameter 

  PML ($M) Median ($M)
Prob[Truncation Point <= 
Specific PML] Tail Location Parameter 

Industry-Wide Organization 2,243 88 0.931 0.750 4.481 0.934 
Specific Firm 1,000 88 0.99 0.472 4.481 0.528 
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Figure 5.13 
Industry –Wide vs Specific Firm Truncation Distribution 
 

 
 
 
 
 
Figure 5.14 
Industry –Wide vs Specific Firm Truncation Distribution 
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Table 5.6 US Banks and Insurers. 
Industry-Wide Organization Loss Severity Parameter, Loss Occurrences and Aggregate Loss Sample Correlation 
 
 

Class Business Units Event Types Number of 
Observations

Amount 
($M) 

Severity 
Parameter Weight Sample 

Correlation 
Adjusted Sample 

Correlation 
# Yearly 
Claims 

1 All Business Units CPBP 926 37,579 0.848 0.466 1 0.319   1 0.100   50 
  All Business Units Other Event Types 1063 28,336 0.659 0.534 0.319 1   0.100 1     

2 All Business Units CPBP 926 37,579 0.848 0.466 1 0.232 0.528 1 0.100 0.100 50 
 All Business Units Internal Fraud 608 19,587 0.778 0.306 0.232 1 0.664 0.100 1 0.100   
  All Business Units Other Event Types 455 8,749 0.352 0.229 0.528 0.664 1 0.100 0.100 1   

3 Insurance CPBP 344 19,214 0.598 0.650 1 0.307   1 0.100   50 
 Insurance Other Event Types 185 3,797 0.127 0.350 0.307 1   0.100 1     
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Table 5.7  US Banks and Insurers 
Capital Charge’s Sensitivity to the Truncation Point Distributional Assumption 
All Business Lines and All Event Types 
 
 Constant Logistic Normal 
  Severity VaR ($M) Severity VaR ($M) Severity VaR ($M) 

US Banks 1.826 >100,000 0.750 2,089 0.886 8,220 

US Insurers 2.184 >100,000 0.479 180 0.896 8,633 
 
Assuming yearly number of loss occurrences exceeding $1M equal to 25  
 
 
 
 
 
 
Table 5.8 Capital Charge - All Business Lines and All Event Types 
($M) 
 

 Severity Yearly Number of Loss Occurrences in Excess of $1M  

  parameter 5 10 25 50 70 

US Banks 0.750 599 1,041 2,106 3,562 4,596 

US Insurers 0.479 70 104 179 278 350 
 
 
 
Table 5.9 Capital Charge for Three Business Line and Event Type Combinations  
 
       

 
All Business Lines & Event 

Types 
CPBP -  Other Event Types CPBP- Internal Fraud- Other 

Event Types 
  VaR ($M) % Increase VaR ($M) % Increase VaR ($M) % Increase 

US Banks 3,460 0 5,653 63 6,324 83 
US Insurers 285 0 611 115   

 
Assuming yearly number of loss occurrences exceeding $1M equal to 50  
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Figure 5.15   CPBP Capital Charge Distribution 
US Banks 
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Figure 5.16   Internal Fraud Capital Charge Distribution 
US Banks 
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Figure 5.17   Other Event Types Capital Charge Distribution 
US Banks 
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Figure 5.18   Aggregated Capital Charge Distribution Using Cauchy Copula 
US Banks 
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Figure 5.19 
Aggregated Capital Charge for Student’t -Copula  
US Banks 
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Table 5.10 Capital Charge and Capital Saving by Types of Copulas. 
US Banks 
($Million) 
  Industry-Wide Bank Specific Bank 
    VaR Capital Saving Percentage VaR Capital Saving Percentage
  Comonotonic 7,015 0 0.00 481 0 0.00 

1 - Cauchy 6,582 433 6.58 448 33 7.26 
2 6,509 506 7.77 446 35 7.81 
3 6,468 547 8.45 444 36 8.17 
4 6,435 580 9.01 443 37 8.41 
5 6,416 599 9.33 442 38 8.68 
6 6,400 615 9.61 441 39 8.88 
7 6,391 624 9.77 441 40 9.00 
8 6,381 634 9.93 440 40 9.17 
9 6,374 641 10.06 440 41 9.26 
10 6,373 642 10.07 440 41 9.30 

D
eg

re
es

 o
f f

re
ed

om
 

Infinite- Normal 6,317 698 11.05 437 44 10.02 
  Independent 6,290 724 11.52 433 47 10.92 
 
Banks’ activities are classified into three event types: CPBP – Internal Fraud & EPWS  and Other Event Types. 

Table 5.11 Capital Charge and Capital Saving by Types of Copulas. 
US Insurers 
($Million) 
 
  Industry-Wide Insurer Specific Insurer 
    VaR Capital Saving Percentage VaR Capital Saving Percentage
  Comonotonic 625 0 0.00 125 0 0.00 

1 - Cauchy 612 14 2.237 119 6 4.91 
2 611 15 2.427 118 7 5.92 
3 611 15 2.424 117 8 6.84 
4 610 15 2.502 117 9 7.53 
5 611 15 2.412 116 9 8.04 
6 611 15 2.403 116 10 8.38 
7 611 14 2.370 115 10 8.65 
8 611 15 2.385 115 10 8.84 
9 610 15 2.444 115 10 9.01 
10 610 15 2.443 115 10 9.14 

D
eg

re
es

 o
f f

re
ed

om
 

Infinite- Normal 608 18 2.908 113 12 10.43 
  Independent 606 19 3.159 112 13 11.78 
 
Insurers’ activities are classified into two event types: CPBP and Other Event Types 
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Table 5.12 US Industry-wide Bank.  
Descriptive statistics of the Capital Charge  
($million) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

    Mean 
St-
Dev Median 95-Perc 

99-
Perc 

Min 
Confidence 

Interval 

Max 
Confidence 

Interval Skewness 
Kurtosis 
Excess 

1 - Cauchy 6,582 455 6,560 7,353 7,717 6,552 6,612 0.260 -0.074 
2 6,509 456 6,485 7,284 7,650 6,479 6,539 0.294 0.040 
3 6,468 457 6,436 7,262 7,610 6,438 6,498 0.304 0.091 
4 6,435 454 6,404 7,205 7,584 6,405 6,465 0.304 0.129 
5 6,416 456 6,392 7,204 7,572 6,386 6,446 0.318 0.179 
6 6,400 451 6,376 7,160 7,575 6,370 6,430 0.300 0.225 
7 6,391 451 6,371 7,149 7,576 6,361 6,420 0.309 0.177 
8 6,381 448 6,358 7,142 7,528 6,351 6,410 0.325 0.328 
9 6,374 448 6,354 7,140 7,536 6,344 6,403 0.296 0.153 

10 6,373 453 6,349 7,142 7,516 6,343 6,403 0.336 0.242 

D
eg

re
es

 o
f f

re
ed

om
 

Infinite- Normal 6,317 436 6,298 7,083 7,384 6,288 6,345 0.293 0.217 
  Independent 6,290 436 6,279 7,037 7,342 6,262 6,319 0.274 0.163 
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Table 5.13 Mixing Weights by types of copulas. 
 
 
 
  Comonotonic 4% 

1 - Cauchy 8% 

2 8% 

3 8% 

4 8% 

5 8% 

6 8% 

7 8% 

8 8% 

9 8% 

10 8% 

D
eg

re
es

 o
f f

re
ed

om
 

Infinite- Normal 8% 

  Independent 8% 
 
 
 
Table 5.14 US Industry-wide Bank & Specific Bank 
Descriptive statistics of the mixing weighted Capital Charges  
($million) 
 

 
  Industry-Wide Bank Specific Bank 

Minimum 5,892 410 

Maximum 7,007 481 

Mean 6,433 443 

Median 6,431 443 

1% Quantile 6,071 422 

5% Quantile 6,234 431 

95% Quantile 6,639 455 

99.9% Quantile 6,830 467 

Confidence Interval 1 6,433 443 

Confidence Interval 2 6,434 443 

Skewness 0.1030 0.0786 

Kurtiosis Excess 0.0037 0.0029 
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Figure 5-20 US Industry-wide Bank  
Base Scenario 
Histogram of the mixing weighted Capital Charges  
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Figure 5-21 US Specific Bank 
Base Scenario 
Histogram of the mixing weighted Capital Charges  
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