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Abstract 
 
Three definitions of fuzzy random variables (FRVs) have been cited in the current literature: the 
first is due to Kwakernaak (1978), who viewed a FRV as a vague perception of a crisp but 
unobservable RV; the second is due to Puri and Ralescu (1986), who regarded FRVs as random 
fuzzy sets; and the third is due to Liu and Liu (2003), whose notion of FRV was based on a 
concept they called a credibility measure.  Given the different rationales, three questions arise: 
(1) how is each of these views of FRVs conceptualized; (2) what are the differences and 
similarities between the metrics for each of these views, and (3) how are the metrics for these 
three views implemented.  The purpose of this article is to present some preliminary observations 
with respect to the answers to these questions.
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1. Introduction 
 
Actuarial models involve two important sources of uncertainty:  randomness and fuzziness.  
Randomness relates to the stochastic variability of all possible outcomes of a situation.  
Fuzziness, on the other hand, can be traced to incomplete knowledge regarding the situation.  
Randomness and fuzziness can be merged to formulate a fuzzy random variable (FRV), that is, a 
function that assigns a fuzzy subset to each possible random outcome [Shapiro (2009)]. 
 
Anecdotal evidence suggests that actuaries are receptive to the notion of FRVs.  They generally 
recognize that there are sources of uncertainty that random variables cannot capture and they are 
used to hearing that fuzziness is a key component of that uncertainty.  Consequently, since 
random variables are at the core of actuarial concepts and fuzziness permeates every aspect of 
actuarial modeling and analysis, one would expect to see FRVs implemented often, both in the 
actuarial literature and in practice.  But this is rarely the case. 
 
A plausible explanation of why FRVs are not being implemented more often by potential 
actuarial users is that many of these users have a problem conceptualizing FRVs and/or they are 
not sufficiently familiar with FRV methodology.  This state of affairs likely is exasperated by the 
fact that there are three different definitions of FRVs cited in the current literature, and each of 
these definitions is associated with a different set of metrics.  The first is due to Kwakernaak 
(1978), who viewed a FRV as a vague perception of a crisp but unobservable RV; the second is 
due to Puri and Ralescu (1986), who regarded FRVs as random fuzzy sets; and the third is due to 
Liu and Liu (2003), whose notion of FRV was based on a concept they called credibility 
measure.   

Assuming the foregoing explanation is valid, the purpose of this ongoing study is to help 
alleviate the situation.  As part of this effort, this article is a synopsis of the three different 
definitions of FRVs cited in the current literature.  The article begins with an overview of 
probability, possibility and credibility spaces, since they are pertinent to this discussion. The 
Kwakernaak FRV, the Puri and Ralescu FRV, and Liu and Liu FRV are discussed next.  The 
focus is on their definitions and how they are conceptualized, their expected values, and their 
variances.  Finally, there is a brief summary. 

 
2. Probability, Possibility, and Credibility1 
 
In this section, we briefly review three notions that are pertinent to our discussion:  probability, 
possibility, and credibility spaces.  Basic features of these spaces are summarized in Table 1 and 
the discussion that follows. 
 
   

                                                 
1 See Liu (2005), Chapters 2 and 3, for a more detailed discussion of the topics of this section. 
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Table 1:  Probability, Possibility, and Credibility Spaces 

Probability Space 
(W, A, Pr) is a probability space 
 W: sample space 
 A: s-algebra of subsets of W 
 Pr: probability measure on W 
 
Possibility Space 
(Q, P(Θ), Pos) is a possibility space 
 Θ: sample space 
 P(Θ): power set of Θ 
 Pos: possibility measure on Q 
 
Credibility Space 
(Q, P(Θ), Cr) is a credibility space 
 Θ: sample space 
 P(Θ): power set of Θ 
 Cr: credibility measure on Q 
 

 

2.1 Probability 

For benchmarking purposes, we begin with a description of a probability space.  As indicated in 
Table 1, a probability space is defined as the 3-tuple (W, A, P), where W = {w1, w2, ..., wN} is a 
sample space, A is the s-algebra of subsets of W, and Pr, a probability measure on W, that 
satisfies: 

 Pr{Ω} = 1 
Pr{∅} = 0 

 0 § Pr{A} § 1 for any A ∈ A, 
 For every countable sequence of mutually disjoint events {Ai}, i=1, 2, ... 

{ }∑
∞

=

∞

=
=

⎭
⎬
⎫

⎩
⎨
⎧

1i
ii

1i
APrAPr ∪  

Since a probability measure is based on binary (Boolean) logic, it satisfies the law of excluded 
middle (which requires that a proposition be either true or false), the law of contradiction (which 
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requires that a proposition cannot be both true and false), and the law of truth conservation 
(which requires that the truth values of a proposition and its negation should sum to unity).2 
 
2.2 Possibility 
 
As one contrast to the probability space of Table 1, a possibility space is defined as the 3-tuple 
(Q, P(Θ), Pos), where Θ={θ1, θ2, ..., θN} is a sample space, P(Θ), also denoted as 2Q, is the 
power set of Θ, that is, the set of all subsets of Q, and Pos is a possibility measure defined on Q.  
Pos{A}, the possibility that A will occur, satisfies: 

 Pos{Q} = 1 
 Pos{∅} = 0 

0 § Pos{A} § 1, for any A in P(Q) 
 Pos{ ∪i Ai} = supi Pos{Ai} for any collection {Ai} in P(Q) 
 
As an example, the heavy (red) line of Figure 1 shows a representation of the possibility of a 
fuzzy event characterized by ξ ≥ x, where ξ = (a, b, c), a < b < c, is a triangular fuzzy variable.3 
 

 
Figure 1:  Possibility that ξ is greater than x 

 
 
Note that the possibility of an event is determined by its most favorable case only, in contrast to 
the probability of an event, where all favorable cases are accumulated.   
 
By its very nature, the possibility measure is inconsistent with the law of excluded middle and 
the law of contradiction, and does not satisfy the law of truth conservation. [Liu (2012: 377)] 
 

                                                 
2 Liu (2012: xiii-xiv) 

3 Adapted from Huang (2006). 
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2.3 Necessity4 
 
The necessity measure of a set A often is defined as the impossibility of the opposite set Ac.5 
[Liu (2005: 80)] 
 
Formally, [Zadeh (1979)] let (Θ, P(Θ), Pos) be a possibility space, and A a set in P(Θ). Then the 
necessity measure of A is defined by 
 

Nec{A} = 1 - Pos{Ac}. 
 
The heavy (red) line of Figure 2 shows a representation of Nec{ξ ≥ x}. 

 
Figure 2:  Necessity that ξ is greater than or equal x 

 
Notice that Nec{ ξ ≥ x } = 1 -  Pos{ ξ < x }. 
 
2.4 Credibility 
 
Given the limitations of the possibility measure mentioned previously, Liu and Liu (2002) 
suggested replacing it with what they termed a credibility measure.  This credibility measure 
takes the form 

( )1Cr{X r} Pos{X r} Nec{X r}
2

≤ = ≤ + ≤  

or, what is equivalent  

X X
t r t r

1Cr{X r} sup (t) 1 sup (t)
2 ≤ >

⎛ ⎞≤ = μ + − μ⎜ ⎟
⎝ ⎠

. 

 
 The set Cr on the power set P is called a credibility measure if it satisfies the following four 
axioms: [Liu (2007: 81-2)] 
 

                                                 
4 Possibility and necessity measures were used as plausibility and belief measures by Shafer (1976, 1987) and with 
respect to fuzzy sets by Zadeh (1978).  Possibility theory, which is based on these two measures, was extensively 
covered in Dubois and Prade (1988). [Wang and Klir (1992: 68)] 

5 This need not be the case.  Liu and Liu (2005: 281), for example, first defines the conditions for a necessary 
measure, and then validates that Nec(A) is the dual of Pos(Ac). 
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Cr{Q} = 1 
Cr{A} ≤ Cr{B} whenever A ⊂ B 
Cr{A} + Cr{Ac} = 1 for any event A 
Cr{∪i Ai}=supi Cr{Ai} for any events{Ai} with supi Cr{Ai}< 0.56  

Notice that the credibility measure is a special type of non-additive measure with self-duality.  
[Liu (2007: 82)]  Also, a fuzzy event may fail even though its possibility achieves 1, and may 
hold even though its necessity is 0. However, the fuzzy event must hold if its credibility is 1, and 
fail if its credibility is 0.  [Liu (2005: 81)] 
 
The heavy (red) line of Figure 3 shows a representation of the credibility value of the fuzzy event 
characterized by ξ ≥ x. 

 
Figure 3:  Credibility that ξ ≥ x 

 
3. The Kwakernaak FRV Model 
 
Kwakernaak (1978) conceptualized a FRV as a vague perception of a crisp but unobservable RV, 
which is referred to as the "original".  As an example of his view, consider the task of projecting 
pension wealth at retirement for a cohort of active plan participants.  Their actual pension wealth, 
X, say, is an ordinary RV on the positive real line.  However, we might only perceive a random 
variable, x, say, through a set of "windows" like “less than average pension wealth,” “average 
pension wealth,” and “more than average pension wealth,” which we refine according to our 
information.  That is, fuzzy sets are perceived as observation results since the underlying X is not 
observable.  
 
 Figure 4 shows a representation of the Kwakernaak FRV trajectory.  As indicated, 
realizations are assigned to each elementary event ωi ∈ Ω.  Real valued realizations lead to real 
RVs, X(ωi), while fuzzy perceptions of the realizations lead to FRVs, ξ(ωi).  Moreover, if X(ωi) 
∈ ξ(ωi), then X(ωi) constitutes an "original" of ξ(ωi). 
 
 
 
 
 

                                                 
6 An alternate criterion is given by Liu (2005: 82) 
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3.1 The Kwakernaak FR

e ility space and F(R) denote the set of all fuzzy numbers in 

 having compact a-levels for a œ [0, 1].  This is the class of mappings U: RØ[0, 1], 

that is, U(u)  R such that Ua is a nonempty compact interval, where 

 
¥a}  if aœ(0,1] 

hen, a FRV is a mapping x: W Ø F(R) such that for any a œ [0, 1] and all w œ W, the real valued 

apping7  
inf xa: W Ø R, satisfying inf xa(w) = inf (x(w))a, and 

sup xa: W Ø R, satisfying sup xa(w) = sup (x(w))a, 

re real valued RVs. 
 
 Given ω, the unique characteristic of the Kwakernaak FRV is captured by its α-cut, which is 
depicted Figure 5: 
 
 
 
 

    

                                                

Figure 4:  Kwakernaak FRV Trajectory 
 

V 
Formally, let (W, A, P) b  a probab 

R, the set of real numbers.  Specifically, F(R) denotes the class of the normal convex fuzzy 

subsets of R

œ [0, 1], for all u œ , 

Ua =  {xœR | U(x)

 =  cl(supp U)    if a=0. 
 
T

m

a

 

 
7 Adapted from Kwakernaak (1978), Kruse and Meyer (1987: 64-65), Gil (2004: 11) and Coppi et al (2006). 
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Figure 5:  α-cut of a Kwakernaak FRV 

ngs from W to the left and right-
and side of the fuzzy target F(R), where the latter are real-valued random variables. 

 
Let X be a FRV and UA the collection of all A-m asurable RVs of Ω.  Then [Körner (1997: 31)] 

zzy set on R with 

 
Puri and Ralescu expressed concern over two limitation of the Kwakernaak model: its mapping 
to the real line, rather than an Euclidean n-space; and its notion of measurability, since it was 
limited to fuzzy numbers in R.  To overcome both these concerns they proposed the concept of 

FRVs whose values are fuzzy subsets of Rn, that is, they conceptualized a FRV as a fuzzification 

of a random set 8 (therefore, sometimes called a random fuzzy sets). 9 

    

 
Summarizing, the Kwakernaak FRV takes the form of a mappi
h

 
 
3.2 Kwakernaak FRV Metrics 

e
 
(i) The k-th moment EXk of a FRV X is a fu

 
 
  
(ii) The fuzzy variance of X is a fuzzy set VarK(x) on [0,∞) with  

 
 
 

k
k

XX
(x) sup{ (U) | U , U x}, xμ = μ ∈ = ∈\E EAU

K

2 2 2 2
Var (X) X( ) sup{ (U) | U , D U }, [0, ).μ σ = μ ∈ = σ σ ∈ ∞AU

 
4. The Puri and Ralescu FRV Model 

                                             

nd Meyer (1987: 188), who advocated the Kwakernaak approach, countered 
that the Puri and Ralescu approach relies heavily on probability techniques in Banach spaces, the key tools being 

8 The study of random sets can be traced back to Robbins (1944), although Matheron (1975) is credited with 
rigorously defining the concept. 

9 It often is mentioned (see, for example, Nather (2001: 71)) that the embedding of the concept of a FRV into the 
concept of random sets, under the Puri and Ralescu approach, avoids the measurability issues of the Kwakernaak 
approach.  In contrast, however, Kruse a
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Figure 6 is a simple representa ctory.  

u R

re, under the Puri and Rale
. 

 
.1 The Puri and Ralescu FRV 

Let (Ω, A Rn → [0,1], X: Ω 

→ F(Rn) be defined by X  denote the Borel subsets of Rn.  

 [0,1] [Puri and 

Ralescu (1986: 413)]: 
 

{(ω,x): x ∈ Xα(ω)} ∈A × B 

iven ω, Figure 7 depicts a representation of the α-cut of a Puri and Ralescu FRV.  

Figure 7:  α-cut of a random fuzzy set 
 
 
 

                                                                                                                                                            

tion of the Puri & Ralescu FRV traje

 
Figure 6:  P ri & alescu FRV Trajectory 

 
As indicated in the figu scu approach, the FRV is directly generated as 
 fuzzy-valued variablea

 

4
 

, P) be a probability space, F(Rn) denote the set of fuzzy subsets, u: 

α(ω) = { x ∈ Rn: X(ω)(x) ≥ α}, and B

A Puri and Ralescu FRV is a function X: Ω → F(Rn) such that, for every α ∈

 
G

 

 

embedding theorems, which meant that the Puri and Ralescu result cannot be directly implemented in a software 
tool, unlike the Kwakernaak approach. 
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4.2 Expected Value of a Puri and Ralescu FRV 
 
When quantifying the central tendency of the distribution of a FRV in the Puri and Ralescu 
sense, the most co  measure is the Aumann-type mean [(Aumammon nn (1965)], which extends 
the mean of a real-valued d preserves its main properties and behavior.  
[Sinova et al (2011)] 

Given the probability space (W, A ξ an integrably bounded10 FRV associated with (W, A, P), 
pty bounded set with respect to the L1(P)-norm, the expected value of ξ is the 

n nd Gil (1999: 31)] 

 for all a œ [0, 1],  

 random variable an

 
, P), 

and S(F) a nonem
unique fuzzy set E( | P)ξ� of R  such that [Diaz a

 (E( | P)) dPξ = ξ∫�
α αΩ

where 

{ }α αΩ Ω

 
is the Aumann integral of ξa with respect to P. 

dP fdP | f S( )ξ = ∈ ξ∫ ∫  

 
As noted by Diaz and Gil (1999: 29), Puri and Ralescu defined the EV of a FRV as a 
eneralization of the EV. 

ble ξ : Ω → F(R) is integrably bounded, the EV of ξ is 

                       

.3 Variance of a Puri and Ralescu FRV 

eng et al (2001) argued that, as in the case of real-valued random variables, the variance should 
ey 

ther proposals for scalar variance are equivalent to considering first a representative 
(numerical) element of every fuzzy realization of the fuzzy random variable (the midpoint of the 
                                                

g
 
Operationally, when a fuzzy random varia

unique and, for all α∈[0,1], is given by the compact interval [Lubiano et al (2000: 308)]                
 

[E(inf ξα), E(sup ξα)]. 
 
 
4
 
F
be used to measure the spread or dispersion of the FRV around its EV.  Accordingly, th
defined the scalar variance of a Puri & Ralescu FRV as: 
 
 11
 
 
 
O

 

10 A FRV ξ is said to be an integrably bounded FRV associated with the probability space (Ω, A, P) if and only if  

0ξ ∈ L1(Ω, A, P), where, for the function f, L1(Ω, A, P) = {f | f: Ω→ R, A-measurable, 
1

f dP < ∞∫ }. 

0

V(X) = V(X ) + V(X ) dα
2 α α⎡ ⎤⎣ ⎦∫�
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support, for instance) and then calculating the dispersion of these numerical values.  Körner  
(1997: 12), for example, used Steiner points in this way. 
 
 
5. The Liu and Liu FRV Model 
 

iu and Liu (2002, 2003) expressed concern that both the Kwakernaak and Puri and Ralescu 

 
  

Cr{A} =  ½ (Pos{A} + 1 − Pos{Ac}) 

hich they contended plays the role of probability measure more appropriately than either the 
r than 

.1 Definition of the Liu and Liu FRV 

 of R. 

lar fuzzy random variable ξ, given ω, is a triangular 
zzy variable ξ , which may be denoted by (X (ω), X (ω), X (ω)), where the X ’s are random 

 

 
As mentioned previously, Liu and Liu (2003) define the expected value of an FRV as a scalar 

 model, if ξ is a fuzzy random variable 
efined on the probability space (Ω, A, Pr), then the expected value of ξ is defined by [Liu (2005 

provided that at least one of the two integrals is finite.  
                                                

L
FRV models were based on the possibility measure, and, as such, did not obey the law of truth 
conservation and were inconsistent with the law of excluded middle and the law of contradiction. 
To overcome these perceived shortcomings, they based their FRV on the credibility measure,
 

 
w
possibility and necessity measures.11  Finally, their FRV model incorporated a scalar, rathe
a fuzzy, expected value, since they viewed the latter as problematic from an implementation 
perspective.  
 
5
 
Focusing on the credibility measure, Liu (2006: 399) defines a fuzzy random variable as a 
function x from a probability space (W, A, Pr) to the set of fuzzy variables such that Cr{x(w) œ 

} is a measurable function of w for any Borel set BB

 
Thus, for example, the trajectory of a triangu
fu ω 1 2 3 i

variables defined on the probability space Ω.  The randomness of ξ is attributable to the random
variables Xi , i = 1, 2, 3.  [Hao and Liu (2009: 13)] 
 
 
5.2 Expected Value of the Liu and Liu FRV 

value rather than a fuzzy number.  In particular, in their
d
105)] 

0

0

E[ ] Cr{ x}dx Cr{ x}dx
∞

−∞

ξ = ξ ≥ − ξ ≤∫ ∫  

 
11 In this regard, Kuchta (2008: 53) commented that the possibility measure is very weak, in the sense that it is very 
easy for a fuzzy number to be smaller than a given value to a high degree. For example, Pos(Ã ≤ r ) = 1 for each r ≥ 
b.  He noted that the necessity measure is significantly stronger. 
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tegrals is finite, and, in the event that ξ is a nonnegative 
zzy random variable, it expected value can be written as: [Li et al (2006: 210)] 

.3 Variance of the Liu and Liu FRV 

ξ].  Liu & Liu (2003: 154) define the variance, 
ar[ξ], of ξ as the expected value of the FRV (ξ  - E[ξ])2.  That is 

. Comments 
 
The article was to give a ree different typ s cited in the 
current literature.  To this end, their conceptualization, definition, expected value and variance 
were discussed.  The three methodologies can erentiated on the basis of whether their 
expe riance take the form of a fuzzy variable or a scalar, as shown in Table 2.  
 

Table 2:  Type of expected value and variance for the FR
Value Variance 

Alternatively, the expected value of ξ can be conceptualized as [Li et al (2006: 210)] 
 

0

0

E[ ] Cr{ ( ) r}dr Cr ( ) r}dr Pr(d )
∞

Ω −∞

⎡ ⎤
ξ = ξ ω ≥ − ω ≤ ω⎢ ⎥

⎣ ⎦
∫ ∫ ∫  {ξ

 
provided that at least one of the two in
fu

0Ω

E[ ] Cr{ ( ) r}dr Pr(d )
∞

ξ = ξ ω ≥ ω∫ ∫ . 

 
5
 
Let ξ be a FRV with finite expected value E[
V
 

Var[ξ] = E[(ξ  - E[ξ])2]. 
 
 
6

purpose of this synopsis of the th es of FRV

 be diff
cted value and va

Vs 
Researcher(s) Expected 
   
Kwakernaak fuzzy fuzzy 
Puri & Relescu fuzzy scalar 
Liu & Liu scalar scalar 
   

 
 
 
 
 

ARC_2012_Shapiro_B_01_Implementing Fuzzy Random Variables 12



References 
 
Aumann, R. J., 1965  "Integrals of set-valued functions," J. Math. Anal. Appl. 12, 1-12. 
 
Coppi, R., Gil, M. A., Kiers, H. A. L., 2006. "The fuzzy approach to statistical analysis," 

Computational Statistics & Data Analysis 51, 1-14 
 
Couso, I., Dubois, D., 2009. "On the Variability of the Concept of Variance for Fuzzy Random 

Variables," IEEE Transactions On Fuzzy Systems 17(5), 1070-80. 

Díaz, M.L., Gil, M.A.  1999 “An extension of Fubini's theorem for fuzzy random  variables,” 
Information Sciences 115 (1-4), pp. 29-41   

 
Dubois, D., Prade, H., 1988. Possibility Theory--An Approach to Computerised Processing of 

Uncertainty. Plenum Press, NewYork. 
 
Feng, Y., Hu, L. and Shu, H. 2001. "The Variance and Covariance of Fuzzy Random Variables 

and Their Applications," Fuzzy Sets and Systems 120: 487-497. 

Gil, M. Á, 2004. "Fuzzy random variables: Development and state of the art," in: Mathematics of 
Fuzzy Systems, Linz Seminar on Fuzzy Set Theory. Linz, Austria. 

 
Hao, F.-F., Liu, Y.-K.  2009 “Mean-variance models for portfolio selection with fuzzy random 

returns,” Journal of Applied Mathematics and Computing 30 (1-2), pp. 9-38 
 
Huang, X., 2006. "Fuzzy chance-constrained portfolio selection," Applied Mathematics and 

Computation 177, 500-507. 
 
Körner, R., 1997. Linear Models with Random Fuzzy Variables, Technischen Universität 

Bergakademie Freiberg 
 
Körner, R. and W. Näther. (2002) “On the variance of random fuzzy variables,” in Bertoluzza, 

C., M. A. Gil, and D. A. Ralescu. Statistical Modeling, Analysis and Management of Fuzzy 
Data, New York:  Physica-Verlag. 

 
Kruse, R. and Meyer, K.D. 1987. Statistics with Vague Data. D. Reidel Pub. Co. 
 
Kuchta, D., 2008, "Optimization with Fuzzy Present Worth Analysis and Applications," in C. 

Kahraman (Ed.): Fuzzy Engineering Economics with Appl., STUDFUZZ 233, Springer-
Verlag Berlin Heidelberg, 43-69. 

 
Kwakernaak, H. 1978. “Fuzzy Random Variables—I. Definitions and Theorems,” Information 

Sciences 15(1), 1-29. 
 
Kwakernaak, H.  1979. “Fuzzy Random Variables—II. Algorithms and Examples for the 

Discrete Case,” Information Sciences 17(3), 253-278. 

ARC_2012_Shapiro_B_01_Implementing Fuzzy Random Variables 13



 
Li, S., Zhao, R., Tang, W., 2006, "Fuzzy Random Homogeneous Poisson Process and Compound 

Poisson Process," Journal of Information and Computer Science 1(4), 207-224. 
 
Liu B., 2005, Foundations of Uncertainty Theory, Department of Mathematical Sciences, 

Tsinghua University. 
 
Liu, B., 2006, "A survey of credibility theory," Fuzzy Optimization and Decision Making 5(4), 

387-408. 
 
Liu, B., 2007, Uncertainty Theory, 2nd ed., Springer-Verlag, Berlin. 
 
Liu, B., 2012, Uncertainty Theory, 4th Ed., Uncertainty Theory Laboratory, Tsinghua University 
 
Liu, B., Liu, Y. -K., 2002. "Expected value of fuzzy variable and fuzzy expected value models," 

IEEE Transaction on Fuzzy Systems 10, 445-450. 
 
Liu, Y.-K. and Liu, B. (2003) "Fuzzy Random Variables: A Scalar Expected Value Operator," 

Fuzzy Optimization and Decision Making 2(2), 143-160. 
 
Lubiano, M. A., Gil, M. A., López-Díaz, M., López, M. T., 2000, "The                                                                  

-mean squared dispersion associated with a fuzzy random variable," Fuzzy Sets and 
Systems 111, 307-317. 
λ
G

 
Matheron, G., 1975, Random Sets and Integral Geometry, Wiley, New York, 1975. 
 
Näther, W., 2001, "Random fuzzy variables of second order and applications to statistical 

inference," Information Sciences 133, 69-88. 
 
Nguyen, H. T. and B. Wu (2006) Fundamentals of Statistics with Fuzzy Data, New York: 

Springer. 
 
Puri, M. L. and Ralescu, D. A.  1986. “Fuzzy Random Variables,” Journal of Mathematical 

Analysis and Applications 114, 409-422. 
 
Robbins, H. E., 1944, "On the measure of a random set," Annals of Mathematical Statistics 

15(1), 70-74. 
 
Shapiro, A.F., 2009, “Fuzzy random variables”, Insurance: Mathematics and Economics, 44(2), 

307-314. 
 
Shafer, G., 1976.  Mathematical Theory of Evidence. Princeton University Press, Princeton 
 
Shafer, G., 1987, "Belief function and possibility measures," in: J. Bezdek (eds), Analysis of 

Fuzzy Information, CRC Press, Boca Raton, FL, pp. 51–83. 
 

ARC_2012_Shapiro_B_01_Implementing Fuzzy Random Variables 14



ARC_2012_Shapiro_B_01_Implementing Fuzzy Random Variables 15

Sinova, B., Gil, M. Á., Colubi, A., Aelst, S. V. 2011. "The median of a random fuzzy number. 
The 1-norm distance approach," Fuzzy Sets and Systems, doi:10.1016/j.fss.2011.11.004 

 
Wang, Z., Klir, G. J., 1992. Fuzzy Measure Theory, Plenum Press, New York. 
 
Wang, S., Watada, J., 2010, "Fuzzy Random Redundancy Allocation  Problems," in W. A. 

Lodwick and J. Kacprzyk (Eds.), Fuzzy Optimization - Recent Advances and Applications, 
425-456. 

 
Zadeh, L.A. (1968). Probability Measures of Fuzzy Events. J. Math. Analysis and Appl., 10:421-

-427. 
 
Zadeh, L. A., 1978, “Fuzzy set as the basis for the theory of possibility”, Fuzzy Sets and 

Systems, 1: 3-28. 
 
Zadeh, L.A., 1979.  "A theory of approximate reasoning," in: J. Hayes, D. Michie and R.M. 

Thrall, eds., Mathematical Frontiers of the Social and Policy Sciences, Westview Press, 
Boulder, Colorado, 69-129.  




