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ABSTRACT 

 

The hidden Markov model (HMM) is a regime-shift model that assumes observation data 
were driven by hidden regimes (or states). The model has been used in many fields, such as 
speech recognition, handwriting recognition, biomathematics and financial economics. In 
this paper, we describe HMM and its application in finance and actuarial areas. We then 
develop a new application of HMM in mortgage-backed securities exchange-traded funds 
(MBS ETFs).  

We begin with a primer on the hidden Markov model, covering main concepts, the model’s 
algorithms and examples to demonstrate the concepts. Next, we introduce some 
applications of the model in actuarial and financial areas. We then present applications of 
HMM on MBS ETFs. Finally, we establish a new use of HMM for a portfolio management 
with MBS ETFs: predicting prices and trading some MBS ETFs. Data, algorithms and codes 
generated in this paper can be used for future research in actuarial science and finance.  
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SECTION 1: A BRIEF HISTORY OF THE HIDDEN MARKOV MODEL 

 

The hidden Markov model is a signal detection model that assumes observation sequences 

were derived from a hidden state sequence. This sequence is discrete and satisfies the first 

order of a Markov process. Baum and Petrie (1966) developed the mathematical 

foundations of HMM. In their paper, the authors assumed that observations were generated 

by a hidden sequence, which is simulated by a Markov process. In HMM, these states are 

invisible, while observations (the inputs of the model), which depend on the states, are 

visible. An observation at time t of an HMM has a particular probability distribution 

corresponding to a possible state. The probability was called an observation probability. 

Baum and Petrie assumed that the transition probability matrix of the S-states Markov 

process and the observation probability matrix are unknown and proved that we could use 

the maximum likelihood estimate (MLE) to uncover these parameters of the model. 

Therefore, the history of HMM is the history of calibrating its parameters.  

 
Since its introduction in 1966, HMM has undergone some developments. The innovations 
involved solving the third problem above: calibrating the model's parameters. HMM was 
developed from a model for a single observation sequence to a model for multiple 
observation sequences. In 1970, Baum and his colleagues published a maximization 
method in which the parameters of HMM are calibrated using a single observation 
sequence (Baum L. E., Petrie, Soules, & Weiss, 1970). In the paper, the authors suggested 
using the model for weather prediction and stock market behavior.  
 
More than a decade later, Levinson, Rabiner and Sondhi (1983) introduced an MLE method 
for training HMM with multiple observation sequences, assuming that all the observation 
sequences are independent (Levinson, Rabiner, & Sondhi, 1983). The authors pointed out 
three issues of the training algorithm, the Baum-Welch algorithm, and presented a 
modified version of it. Then, they applied a particular class of HMM model, called “left-to-
right HMM,” for speech recognition.  
 
In 2000, Li, Parizeau and Plamondon presented an HMM training for multiple observation 
sequences without the assumption of independence of these sequences (Li, Parizeau, & 
Plamondon, 2000). Li and colleagues also indicated two special cases: independence 
observation sequences and uniform dependence observation sequences. (Baggenstoss, 
2001) introduced a modification of the Baum-Welch algorithm for multiple observation 
spaces. That same year Ghahramani published a complete tutorial of hidden Markov 
models and Bayesian Networks (Ghahramani, 2001). The new overview of connections 
between HMM and Bayesian Networks made the model applicable to multiple-state 
sequences, multiscale representations and a mixture of discrete and continuous variables. 
Great details about the history and theory of HMM and its applications in a variety of fields 
can be found in 
(Dymarski, 2011). 
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The remainder of this paper is organized as follows: We present key concepts, examples 
and algorithms of the hidden Markov model in Section 2. Section 3 contains the 
applications of HMM for a specific MBS ETF, the MBB, to clarify the model’s algorithms. 
Section 4 summarizes some applications of the HMM in finance and actuarial sciences. 
Section 5 displays applications of the HMM in predicting prices and trading some MBS 
ETFs. The last section wraps up the discussion.  

SECTION 2: MAIN CONCEPTS AND EXAMPLES OF HMM 

 

In this section, we will present the main concepts of the hidden Markov model and an 

example of a discrete HMM.  

2.1 Main Concepts of HMM 

 
HMM is a stochastic signal model based on the following assumptions: 

1. An observation at 𝑡 was generated by a hidden state. 
2. The hidden states are finite and satisfy the first-order Markov property. 
3. The matrix of transition probabilities between these states is constant. 
4. The observation at time t of an HMM has a certain probability distribution 

corresponding with a possible hidden state.  
There are two main types of HMM: a discrete HMM and a continuous HMM. The two 
versions have minor differences, so we will first present key concepts of a discrete HMM. 
Then, we will add details about a continuous HMM. 
 
Basic elements of a discrete HMM are: 

 Length of observation data, 𝑇 
 Number of states, 𝑁 
 Number of symbols per state, 𝑀 
 Observation sequence, 𝑂 = {𝑂𝑡, 1 ≤ 𝑡 ≤ 𝑇} 
 Hidden state sequence, 𝑄 = {𝑞𝑡, 1 ≤ 𝑡 ≤ 𝑇} 
 Possible values of each state, 𝑆 = {𝑆𝑖, 1 ≤ 𝑖 ≤ 𝑁} 
 Possible symbols per state, 𝑉 = {𝑣𝑘,, 1 ≤ 𝑘 ≤ 𝑀} 

 Transition matrix, 𝐴 = (𝑎𝑖𝑗), where 𝑎𝑖𝑗is the probability of being in state 𝑆𝑖 at time t 

given that the observation is in state 𝑆𝑖 at time 𝑡 − 1,  
𝑎𝑖𝑗 = 𝑃(𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁. 

 Vector of initial probability, 𝑝 = (𝑝𝑖), 1 ≤ 𝑖 ≤ 𝑁, where 𝑝𝑖 is the probability of being 
in state 𝑆𝑖 at time 𝑡 = 1, 

𝑝𝑖 = 𝑃(𝑞1 = 𝑆𝑖), 1 ≤ 𝑖 ≤ 𝑁. 
 Observation probability matrix, 𝐵 = (𝑏𝑖𝑘), where 𝑏𝑖𝑘 is the probability of being in 

symbol 𝑣𝑘of an observation 𝑂𝑡given that the observation is in state 𝑆𝑖, 
𝑏𝑖𝑘 = 𝑏𝑖(𝑘) = 𝑃(𝑂𝑡 = 𝑣𝑘|𝑞𝑡 = 𝑆𝑖), 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀. 

 Probability of observation 𝑃(𝑂|). This probability is called the likelihood of the 
HMM. 
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For convenience, in the algorithms presented in this paper, we use the notation 𝑏𝑖(𝑂𝑡) to 
present the probability 𝑏𝑖(𝑘). 
 
Transition matrix𝐴, vector of initial probability 𝑝 and observation probability 𝐵 must 
satisfy the probability constraints:  
 

𝑎𝑖𝑗 > 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑁, and ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 = 1, 1 ≤ 𝑖 ≤ 𝑁. 

 
𝑝𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑁, and ∑ 𝑝𝑖

𝑁
𝑖=1 = 1.               

 
𝑏𝑖(𝑘) > 0, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀, and ∑ 𝑏𝑖

𝑀
𝑘=1 (𝑘) = 1, 1 ≤ 𝑖 ≤ 𝑁. 

 
 

The parameters of an HMM are the transition probability matrix 𝐴, the observation 
probability matrix 𝐵 and the initial probability vector p. For convenience, we use a compact 
notation for the parameters: 
(Akaike, 1974) 

 = {𝐴, 𝐵, 𝑝}. 
 

If we have infinite symbols for each hidden state, the symbol 𝑣𝑘 will be omitted from the 
model, and the conditional observation probability 𝑏𝑖(𝑘) is written as 
 

𝑏𝑖(𝑘) = 𝑃(𝑂𝑡|𝑞𝑡 = 𝑆𝑖) = 𝑏𝑖(𝑂𝑡 ), 1 ≤ 𝑖 ≤ 𝑁. 
 
If the probabilities are continuously distributed, we have a continuous HMM. 
 
If we assume that the conditional observation probability is the Gaussian distribution, then 
we have 

𝑏𝑖(𝑂𝑡 ) = 𝐍(𝑂𝑡 , µ𝑖, 𝜎𝑖), 
 

where µ𝑖 and𝜎𝑖 are the mean and variance, respectively, of the normal distribution 
corresponding to the state 𝑆𝑖, and 𝐍(. , . , . ) is a Gaussian density function. 
 
In this case, the parameters of HMM are 
 

 = {𝐴, µ, 𝜎, 𝑝}, 
 

where µ and 𝜎 are vectors of means and variances, respectively, of the Gaussian 
distributions. A simple HMM is presented in Figure 1. 
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Figure 1 

SIMPLE HMM  

 

 
 

In summary, to define an HMM, first we have to choose a number of states, 𝑁, and a number 
of symbols, 𝑀, per state, and specify the symbols. Then, with an observation sequence, 𝑂 =
{𝑂𝑡,, 1 ≤ 𝑡 ≤ 𝑇}, we can find the model’s parameters  = {𝐴, 𝐵, 𝑝}, and use the settings to 
find the hidden state sequence, 𝑄 = {𝑞𝑡,, 1 ≤ 𝑡 ≤ 𝑇} of the observation sequence 𝑂. 

2.2 Example of a Discrete HMM 

We present a simple example of a discrete HMM with two states, 𝑁 = 2, and two symbols 

for each state, 𝑀 = 2. Suppose that we have two boxes, which represent the two states 

𝑆1 and 𝑆2 . 

𝑆 = {𝑆1 , 𝑆2 } = {𝐵𝑜𝑥 𝑜𝑛𝑒, 𝐵𝑜𝑥 𝑡𝑤𝑜}. 

Box one has three red balls and one blue ball. Box two has two red balls and three blue 

balls. The 𝑅𝑒𝑑 ball and 𝐵𝑙𝑢𝑒 ball are the two symbols of each state (or box):  

𝑉 = {𝑣1 , 𝑣2 } = {𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒}. 

A player will first choose one of the two boxes by using a random process (e.g., flipping a 

coin) and then select a ball from the chosen box with replacement. The player repeats the 

process 𝑇 times and records the selected balls. The sequence of selected balls is the 
observation data, for example, 𝑂 = {𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒, 𝐵𝑙𝑢𝑒, 𝑅𝑒𝑑, … }. The sequence of selected 

boxes is the hidden state, for example, 

𝑄 = {𝑞1 , 𝑞2 , 𝑞3 , 𝑞4 , … } = {𝑆1 , 𝑆2 , 𝑆2 , 𝑆1 , … }. 
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We assume that the hidden states of HMM satisfy the first-order Markov chain, which 

means given a state sequence {𝑞1 , 𝑞2 , … , 𝑞𝑇 }, the probability of being in state 𝑆𝑖 at time 𝑡 +

1 depends only on 𝑞𝑡: 

𝑃(𝑞𝑡+1 = 𝑆𝑖|𝑞1 , 𝑞2 , … , 𝑞𝑡) = (𝑃(𝑞𝑡+1 = 𝑆𝑖|𝑞𝑡). 

 If the player chooses the boxes (states) by flipping a pair of coins, the transition probability 

matrix 𝐴 will be 

𝐴 = [
0.5 0.5
0.5 0.5

]. 

Also, the initial probability of choosing the first box (state) is 𝑝 = (0.5,0.5). Because we 

assumed that box one has three red balls and one blue ball, and box two has two red balls 

and three blue balls, we can calculate the probability of observation matrix 𝐵. 

If the state 𝑆1 (or box one) was selected at time 𝑡: 

 The probability of observing a red ball is  

𝑏1(1) = 𝑃(𝑣1|𝑆1 ) = 𝑃(𝑅𝑒𝑑|𝑆1) =
3

4
= 0.75 

 The probability of observing a blue ball is  

𝑏1(2) = 𝑃(𝑣2|𝑆1) = 𝑃(𝐵𝑙𝑢𝑒|𝑆1) =
1

4
= 0.25 

If the state 𝑆2 (or box two) was selected at time 𝑡: 

 The probability of getting a red ball is 

𝑏2(1) = 𝑃(𝑣1|𝑆2) = 𝑃(𝑅𝑒𝑑|𝑆2) =
2

5
= 0.4 

 The probability of getting a blue ball is 

𝑏2(2) = 𝑃(𝑣2|𝑆2) = 𝑃(𝐵𝑙𝑢𝑒|𝑆2) =
3

5
= 0.6 

Thus, we have the observation probability matrix 

𝐵 = [
0.75 0.25
0.40 0.60

].  
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Figure 2 is the summary of the simple HMM. 

Figure 2 

A SIMPLE EXAMPLE OF HMM 

 

Next, we present three main questions that we can ask players when they play the ball 

game. To make it simple, let’s assume that we play the game three times, 𝑇 = 3, and have 

the observation results 𝑂 = {𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒, 𝐵𝑙𝑢𝑒}. Assume that we choose the state (box) 

sequence that satisfies the first order of the Markov chain process; box one was picked the 

first time, 𝑝 = (1,0), the transition matrix of the state sequence is 𝐴 = [
0.7 0.3
0.2 0.8

] and the 

observation probability matrix is 𝐵 = [
0.75 0.25
0.40 0.60

].  

Question 1: Suppose that you are given an observation sequence 𝑂 and the model’s 

parameters  = {𝐴, 𝐵, 𝑝}. Can you calculate the probability of observing 𝑃(𝑂|)? 

We can solve this problem by listing all possible hidden state sequences 𝑄 of the 

observation sequence 𝑂 = {𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒, 𝐵𝑙𝑢𝑒}, calculating the probability 𝑃(𝑂, 𝑄|), and 

having 

𝑃(𝑂|) = ∑ 𝑃(𝑂, 𝑄|)𝑃(𝑄 |)𝑎𝑙𝑙 𝑄 . 

Since the state 𝑆1 is chosen first, we will have four possible state sequences: 

𝑄1 = {𝑆1 , 𝑆1 , 𝑆1 }, 𝑄2 = {𝑆1 , 𝑆1 , 𝑆2 }, 𝑄3 = {𝑆1 , 𝑆2 , 𝑆1 }, 𝑄4 = {𝑆1 , 𝑆2 , 𝑆2 }. (1) 

Then,  

𝑃(𝑂|) = ∑ 𝑃(𝑂|𝑄𝑗 ,
4
𝑗=1 )𝑃(𝑄𝑗 |). 
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We have: 

𝑃(𝑄1 |) = 𝑃({𝑆1 , 𝑆1 , 𝑆1 }|) = 𝑝1 𝑎11 𝑎11 = 1(0.7)(0.7) = 0.49 

𝑃(𝑄2 |) = 𝑃({𝑆1 , 𝑆1 , 𝑆2 }|) = 𝑝1 𝑎11 𝑎12 = 1(0.7)(0.3) = 0.21 

𝑃(𝑄3 |) = 𝑃({𝑆1 , 𝑆2 , 𝑆1 }|) = 𝑝1 𝑎12 𝑎21 = 1(0.3)(0.2) = 0.06 

𝑃(𝑄4 |) = 𝑃({𝑆1 , 𝑆2 , 𝑆2 }|) = 𝑝1 𝑎12 𝑎22 = 1(0.3)(0.8) = 0.24 

and 

 

𝑃(𝑂, 𝑄1|) = 𝑃(𝑅𝑒𝑑|𝑆1)𝑃(𝐵𝑙𝑢𝑒|𝑆1) 𝑃(𝐵𝑙𝑢𝑒|𝑆1) = 0.75(0.25)(0.25) = 0.046875 

𝑃(𝑂, 𝑄2|) = 𝑃(𝑅𝑒𝑑|𝑆1)𝑃(𝐵𝑙𝑢𝑒|𝑆1) 𝑃(𝐵𝑙𝑢𝑒|𝑆2) = 0.75(0.25)(0.6) = 0.1125 

𝑃(𝑂, 𝑄3|) = 𝑃(𝑅𝑒𝑑|𝑆1)𝑃(𝐵𝑙𝑢𝑒|𝑆2) 𝑃(𝐵𝑙𝑢𝑒|𝑆1) = 0.75(0.6)(0.25) = 0.1125 

𝑃(𝑂, 𝑄4|) = 𝑃(𝑅𝑒𝑑|𝑆1)𝑃(𝐵𝑙𝑢𝑒|𝑆2) 𝑃(𝐵𝑙𝑢𝑒|𝑆2) = 0.75(0.6)(0.6) = 0.27. 

Thus,  

𝑃(𝑂|) = 0.046875(0.49) + 0.1125(0.21) + 0.1125(0.06) + 0.27(0.24) = 0.118144. 

Figure 3 shows the observations with the state sequence 𝑄3 = {𝑆1 , 𝑆2 , 𝑆1 }. 

 

Figure 3 

A STATE SEQUENCE AND OBSERVATIONS OF AN HMM  

 

 

Question 2: Given observation 𝑂 and the model’s parameter , find the “best fit” hidden 

state sequence 𝑄.  
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Given the observation 𝑂 and , there are many possible state sequences. We will need to 

find the sequence that maximizes the observation probability. In the ball game example, 

with the observations 𝑂 = {𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒, 𝐵𝑙𝑢𝑒} and the initial probability 𝑝 = (1,0), we have 

four possible state sequences, listed in (1). We will choose the state sequence 𝑄𝑘 , which 

maximizes the likelihood of the observations,  

𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤4{𝑃(𝑂, 𝑄𝑗|)𝑃(𝑄𝑗|)}. 

We can see from the earlier calculations that 𝑄4 = {𝑆1 , 𝑆2 , 𝑆2} is the optimal state sequence, 

since it maximizes the probability of the observation 𝑂: 

𝑃(𝑂|𝑄4 ,) = 𝑃(𝑂, 𝑄4|)𝑃(𝑄4|) = 0.27(0.24) = 0.0648. 

Question 3: Suppose that you do not know the model’s parameter . All you know is an 

observation sequence 𝑂 = {𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒, 𝐵𝑙𝑢𝑒}. Can you find  ? 

This is the hardest question, and to answer it we have to find the set of model parameters, 

, that maximizes the probability of observation 𝑃(𝑂|). Like other optimization strategies, 

we will start by guessing a set of parameters, , calculate 𝑃(𝑂|) then modify in each step 

until we locate the optimizer ∗ that gives the targeted observation probability.  

The process is too complicated to do by hand. Therefore, we will not present a complete 

solution for the last question of the HMM here. Instead, we will describe the mathematical 

algorithm to solve this problem and demonstrate a full iteration of the training process 

Section 3.  

SECTION 3: THREE MAIN PROBLEMS OF HMM AND ITS ALGORITHMS 

3.1 Three Main Problems That an HMM Can Solve 

 

In the ball example of the previous section, we mentioned the three questions or problems 
that we can solve when working with a hidden Markov model. In this section, we will 
present these three most significant problems of HMM in a general case. Applying HMM to 
solve a real-world problem, we face three critical questions: 
 

1. Given the observation data 𝑂 = {𝑂𝑡,, 1 ≤ 𝑡 ≤ 𝑇} and the model parameters  

 = {𝐴, 𝐵, 𝑝}, compute the probability of observations, 𝑃(𝑂|). 
 

2. Given the observation data 𝑂 = {𝑂𝑡,, 1 ≤ 𝑡 ≤ 𝑇} and the model parameters 
 = {𝐴, 𝐵, 𝑝}, find the best corresponding state sequence, 𝑄 = {𝑞𝑡,, 1 ≤ 𝑡 ≤ 𝑇}. 

 
3. Given the observation data 𝑂 = {𝑂𝑡,, 1 ≤ 𝑡 ≤ 𝑇}, calibrate HMM parameters  

 = {𝐴, 𝐵, 𝑝} to maximize the probability of observation. 
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Researchers have found mathematical algorithms to solve each of these problems. The first 

were (Baum & Egon, 1967) and (Baum & Sell, 1968), who introduced the forward and 

backward algorithms to solve the first problem. Viterbi (1967) and Forney (1973) 

developed the Viterbi algorithm to solve the second problem. Baum,  Petrie, Soules, and 

Weiss (1970) presented the Baum-Welch algorithm to solve the third problem for a single 

observation sequence. Over the next three decades, Levinson, Rabiner, and Sondhi (1983), 

and Li, Parizeau, and Plamondon (2000) implemented algorithms based on the Baum-

Welch algorithm to calibrate HMM’s parameters for multiple observation sequences.  

In the following sections, we introduce the forward algorithm, the backward algorithm, the 
Viterbi algorithm and the Baum-Welch algorithm. Either the forward or backward 
algorithm can be used to calculate the probability of observation in problem 1, while both 
of these algorithms are needed in the Baum-Welch algorithm. For convenience, we use the 
notation 𝑏𝑖(𝑂𝑡) for conditional probability 𝑏𝑖(𝑘). 

3.2 Forward Algorithm 

The forward algorithm is an algorithm to find the probability of observation, 𝑃(𝑂|), given 
the HMM’s parameters. In the ball example in Section 2.2, we solve this problem by listing 
all possible outcomes of the hidden states and calculating the probability of observations 
given each state sequence and summing them up to have 𝑃(𝑂|). However, the method is 
not efficient if we have a longer observation sequence, since the process requires too many 
calculations. To solve this issue, we have a better way to calculate the probability of 
observation, the forward algorithm. 

3.2.1 Algorithm 

In the forward algorithm, we calculate the likelihood of the model by considering the 
probability of observation if the last state is 𝑆𝑖: 
 

𝑃(𝑂1, 𝑂2, … , 𝑂𝑇 ,  𝑞𝑇 =  𝑆𝑖 |). 
 
Then, the observation probability 𝑃(𝑂|) is the sum of these conditional probabilities: 

𝑃(𝑂|) = ∑ 𝑃(𝑂1, 𝑂2, … , 𝑂𝑇 ,  𝑞𝑇 =  𝑆𝑖 |)

𝑁

𝑖=1

. 

 
The probability 𝑃(𝑂1, 𝑂2, … , 𝑂𝑇 ,  𝑞𝑇 =  𝑆𝑖 |) can be calculated recursively by defining the 
forward probability function 𝑡(𝑖): 
 

𝑡(𝑖) = 𝑃(𝑂1, 𝑂2, … , 𝑂𝑡 ,  𝑞𝑡 =  𝑆𝑖 |), 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁. 
 
 
Recursively, we have 
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𝑡+1(𝑗) = (∑ 𝑡(𝑖)𝑁
𝑖=1 𝑎𝑖𝑗)𝑏𝑗(𝑂𝑡+1), 1 ≤ 𝑡 < 𝑇, 1 ≤ 𝑗 ≤ 𝑁. 

 
 
The probability of observation 𝑃(𝑂|) is just the sum of all 𝑇(𝑖), 1 ≤ 𝑖 ≤ 𝑁. 
 
Figure 4 is the diagram of the joint probability function 𝑡(𝑖). 

 

Figure 4 

JOINT PROBABILITY FUNCTION 𝑡(𝑖) 
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Algorithm 1 presents the forward algorithm for an HMM. 

 

Algorithm 1 

FORWARD ALGORITHM FOR ONE OBSERVATION SEQUENCE 

 

 

3.2.2 Example 

We can apply the forward algorithm to calculate 𝑃(𝑂|) in the ball example in Section 2.2 
with two states and two symbols, 𝑣1 = 𝑅𝑒𝑑 and 𝑣2 = 𝐵𝑙𝑢𝑒, for each state. 
 
Recall that the observations are 

𝑂 = {𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒, 𝐵𝑙𝑢𝑒}, 
 

𝐴 = [
0.7 0.3
0.2 0.8

] , 𝐵 = [
0.75 0.25
0.40 0.60

] , and 𝑝 = (1,0). 

 
We have 
 

𝑃(𝑂|) = 3(1) + 3(2) =  𝑃(𝑂1, 𝑂2, 𝑂3|𝑞3 =  𝑆1 ) + 𝑃(𝑂1, 𝑂2, 𝑂3|𝑞3 =  𝑆2 ). 
 
Since 𝑝 = (𝑝1, 𝑝2) = (1,0) at time 𝑡 = 1, we have 
 

1(1) = 𝑃(𝑂1|𝑞1 =  𝑆1) = 𝑃(𝑅𝑒𝑑|𝑞1 =  𝑆1) = 𝑝1𝑏1(1) = (1)(0.75) = 0.75 
 

1(2) =  𝑃(𝑂1|𝑞1 =  𝑆2) = 𝑃(𝑅𝑒𝑑|𝑞1 =  𝑆2) = 𝑝2𝑏2(1) = 0. 
 
Using the recursive formula, at time 𝑡 = 2 we have 
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2(1) = [1(1)𝑎11+1(2)𝑎21]𝑏1(2) = 0.75(0.7)(0.25) = 0.13125 
 

2(2) = [1(1)𝑎12+1(2)𝑎22]𝑏2(2) = 0.75(0.3)(0.6) = 0.135. 
 

At time 𝑡 = 3 we have 
 

3(1) = [2(1)𝑎11+2(2)𝑎21]𝑏1(2) = [0.13125(0.7) + 0.135(0.2)](0.25) = 0.029719 

 
3(2) = [2(1)𝑎12+2(2)𝑎22]𝑏2(2) = [0.13125(0.3) + 0.135(0.8)](0.6) = 0.088425. 

 
Thus, the probability of observation is 
 

𝑃(𝑂|) = 3(1) + 3(2) = 0.029719 + 0.088425 = 0.118144. 
 
This result is consistent with the result that we found in Section 2.2. However, using the 
recursive formula significantly reduces the number of calculations needed to find 
𝑃(𝑂|). In general, with 𝑇 observations and 𝑁 states, the traditional method (presented in 
Section 2.2) will need 2𝑇(𝑁𝑇) calculations, since we will have 𝑁𝑇possible state sequences 
and each sequence needs 2𝑇 calculations to calculate 𝑃(𝑄𝑗|) and 𝑃(𝑂, 𝑄𝑗|). In contrast, 

using the forward algorithm we will only need 𝑁2𝑇 calculations. 

3.3 Backward Algorithm 

Similar to the forward algorithm, we can use a backward algorithm to calculate the 
probability 𝑃(𝑂|).  

3.3.1 Algorithm 

Let’s denote the backward probability function 
 


𝑇

(𝑖) = 1, 1 ≤  𝑖 ≤ 𝑁 

and 
 


𝑡
(𝑖) = 𝑃(𝑂𝑡+1, 𝑂𝑡+2, … , 𝑂𝑇|𝑞𝑡 =  𝑆𝑖 , ), 1 ≤ 𝑡 < 𝑇, 1 ≤ 𝑖 ≤ 𝑁. 

 
Then, we can calculate 

𝑡
(𝑖) by using the backward recursive formula: 

 


𝑡
(𝑖) = ∑

𝑡+1
(𝑗)

𝑁

𝑗=1

𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1), 1 ≤ 𝑡 < 𝑇, 1 ≤  𝑖 ≤ 𝑁. 

 
The probability of observation 𝑃(𝑂|) is just the sum of all 𝑝𝑖𝑏𝑖(𝑂1)

1
(𝑖), 1 ≤ 𝑖 ≤ 𝑁. 

 
The conditional probability 

𝑡
(𝑖) is displayed in Figure 5.  
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Figure 5 

CONDITIONAL PROBABILITY FUNCTION 
𝑡
(𝑖) 

 

 

 

Algorithm 2 

BACKWARD ALGORITHM  

 

3.3.2 Example 

 

We apply the backward algorithm to calculate 𝑃(𝑂|) in the ball example in Section 2.2 
with two states (𝑆1, 𝑆2) and two symbols (𝑣1 = 𝑅𝑒𝑑 and 𝑣2 = 𝐵𝑙𝑢𝑒) for each state. Recall 
that we have 

{𝑂1, 𝑂2, 𝑂3} = {𝑅𝑒𝑑, 𝐵𝑢𝑒, 𝐵𝑙𝑢𝑒}, 
 

𝐴 = [
0.7 0.3
0.2 0.8

] , 𝐵 = [
0.75 0.25
0.40 0.60

] , and 𝑝 = (1,0). 

 
First, we calculate the forward function at time 𝑡. 
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At time 𝑡 = 3: 


3

(1) = 1, and 
3

(2) = 1. 

At time 𝑡 = 2: 


2

(1) = 
3

(1)𝑎11𝑏1(𝑂3) + 
3

(2)𝑎12𝑏2(𝑂3) = 1(0.7)(0.25) + 1(0.3)(0.6) = 0.335 


2

(2) = 
3

(1)𝑎21𝑏1(𝑂3) + 
3

(2)𝑎22𝑏2(𝑂3) = 1(0.2)(0.25) + 1(0.8)(0.6) = 0.53 

At time 𝑡 = 1: 


1

(1) = 
2

(1)𝑎11𝑏1(𝑂2) + 
2

(2)𝑎12𝑏2(𝑂2) = 0.335(0.7)(0.25) + 0.53(0.3)(0.8) = 0.157525 

1
(2) = 2

(1)𝑎21𝑏1(𝑂2) + 2
(2)𝑎22𝑏2(𝑂2) = 0.335(0.2)(0.25) + 0.53(0.8)(0.6) = 0.27215 

The observation probability is  

𝑃(𝑂|)=𝑝1𝑏1(𝑂1)
1

(1) + 𝑝2𝑏2(𝑂1)
1

(2) = 1(0.75)(0.157525) + 0 = 0.118144. 

The result is identical with the result using the forward algorithm. We also notice that 

𝑃(𝑂, 𝑞𝑡 = 𝑆𝑖|) = 𝑡(𝑖)
𝑡
(𝑖). 

Thus, we can use the forward and backward functions to calculate the model’s likelihood: 

𝑃(𝑂|) = ∑ 𝑃(𝑂, 𝑞𝑡 = 𝑆𝑖|)𝑁
𝑖=1 =∑ 𝑡

𝑁
𝑖=1 (𝑖)

𝑡
(𝑖), 1 ≤ 𝑡 ≤ 𝑇. 

For example, with 𝑡 = 2, we have  

 𝑃(𝑂|) = 2
(1)

2
(1)+2(2)

2
(2) = 0.13125(0.355) + 0.135(0.53) = 0.118144. 

3.4 Viterbi Algorithm 

The Viterbi algorithm is used to solve the second problem of HMM: find the “best fit” 
hidden states of the observations. The goal here is to find the best sequence of states 𝑄 
when (𝑂, ) are given to maximize the probability of observation 𝑃(𝑂, 𝑄|). There are 
many possible state sequences 𝑄 for an observation sequence 𝑂. Among these state 
sequences, we need to find the “best fit" sequence 𝑄∗ that satisfies 
 

𝑃(𝑂, 𝑄∗|) = 𝑚𝑎𝑥all Q {𝑃(𝑂,  𝑄 |)}. 

 
The process of selecting the hidden states is explained in the next section. 

3.4.1 Algorithm 

 
We define the function 𝑡(𝑗) with 1 ≤ 𝑡 ≤ 𝑇 and 1 ≤ 𝑗 ≤ 𝑁 
 

𝑡(𝑗) = 𝑚𝑎𝑥1≤𝑗≤𝑁{𝑃(𝑞1 , 𝑞2 , … ,  𝑞𝑡 = 𝑆𝑗,  𝑂1 ,  𝑂2 , … ,  𝑂𝑡 |} . 
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Then the maximum of observation probability with an optimal state sequence 𝑄∗ is the 
maximum of function 𝑇(𝑗) on all possible values 𝑗, 
 

𝑃(𝑂, 𝑄∗|) = 𝑚𝑎𝑥1≤𝑗≤𝑁 {𝑇(𝑗)}. 

 
The function 𝑡(𝑗) can be calculated recursively by initializing 

1(𝑗) = 𝑝𝑖 𝑏(𝑂1), 1 ≤ 𝑗 ≤ 𝑁, 

and using the recursive formula 
 

𝑡+1(𝑗) = 𝑏𝑗 (𝑂𝑡+1)𝑚𝑎𝑥1≤i≤N {[1(𝑗)𝑎𝑖𝑗]} .  

 
Using 𝑡(𝑗) we can locate the most likely state 𝑞𝑡 as 
 

𝑞𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤𝑁{𝑡(𝑗)}. 

The Viterbi algorithm is presented in Algorithm 3. 

 

Algorithm 3 

VITERBI ALGORITHM FOR ONE OBSERVATION SEQUENCE 
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3.4.2 Example 

We now apply the Viterbi algorithm to find the “best fit” hidden states 𝑄∗ (or the sequence 

of boxes) of the observation 𝑂 = {𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒, 𝐵𝑙𝑢𝑒} in the ball example to maximize the 

probability of observation 𝑃(𝑂, 𝑄∗|). Recall that 

𝐴 = [
0.7 0.3
0.2 0.8

] , 𝐵 = [
0.75 0.25
0.40 0.60

] , and 𝑝 = (1,0). 

 
We will calculate values of the probability function 𝑡(i) and the index function 𝑡(i). 
 
At time 𝑡 = 1: 

1(1)=𝑝1𝑏1(𝑂1) = 𝑝1𝑏1(𝑅𝑒𝑑) = 𝑝1𝑏1(𝑣1) = 𝑝1𝑏1(1) = 0.75, 

1(2)=𝑝2𝑏2(𝑂1) = 𝑝2𝑏2(𝑅𝑒𝑑) = 0, 

1(1) = 1(2) = 0. 

At time 𝑡 = 2: 

2(1)=𝑚𝑎𝑥{ 
1

(𝑖)𝑎𝑖1}𝑏1(𝑂2) = 1(1)𝑎11𝑏1(𝑂2) = 0.75(0.7)(0.25) = 0.13125. 

2(2)=𝑚𝑎𝑥{ 
1

(𝑖)𝑎𝑖2}𝑏2(𝑂2) = 1(1)𝑎12𝑏1(𝑂2) = 0.75(0.3)(0.25) = 0.05625 

2(1) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁1(𝑖)𝑎𝑖1} = 1 

2(2) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁1(𝑖)𝑎𝑖2} = 1. 

At time 𝑡 = 3: 

3(1)=𝑚𝑎𝑥{ 
2

(𝑖)𝑎𝑖1}𝑏1(𝑂3) = 2(1)𝑎11𝑏1(𝑂3) = 0.13125(0.7)(0.25) = 0.02297 

3(2)=𝑚𝑎𝑥{ 
2

(𝑖)a𝑖2}b2(𝑂3) = 2(1)𝑎12𝑏2(𝑂3) = 0.13125(0.3)(0.6) = 0.02363 

3(1) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁{2(𝑖)a𝑖1} = 1 

3(2) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁{2(𝑖)a𝑖2} = 2 

Thus, the “best fit” hidden states are 

𝑞3 = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁{3(𝑖)} = 2 

𝑞2 = 
3

(𝑞3) = 3(2) = 2 

𝑞1 = 
2

(𝑞2) = 2(2) = 1 

In summary, the “best fit” state sequence is 

𝑄∗ = {𝑞1, 𝑞2, 𝑞3} = {1, 2, 2} = {S1, S2 , S2}. 

This result agrees with the result that we found in Section 2.2. 
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With minor changes, the forward algorithm, backward algorithm, and Viterbi algorithm can 

be used for multiple observation sequences as well. Next we present the most important 

algorithm, the Baum-Welch algorithm, for two cases: single observation and multiple 

independent observations. 

3.5 Baum-Welch Algorithm 

We turn now to the solution for the third problem, which is the most difficult problem of 
HMMs. Here we have to find the parameters  = {𝐴, 𝐵, 𝑝} given a finite observation 
sequence 𝑂. A fundamental method is finding a set of parameters  that maximizes the 
probability of observation 𝑃(𝑂|). Unfortunately, given observation data, there is no way to 
find a global maximizer of 𝑃(𝑂|). However, we can find a local maximizer of 𝑃(𝑂|) using 
the Baum-Welch algorithm (Baum L. E., Petrie, Soules, & Weiss, 1970).  
 
The process of the Baum-Welch algorithm is as follows: With an initial set of parameters, , 
the algorithm estimates a mew parameter ∗ using an optimization method to maximize 
the probability of observation 𝑃(𝑂|); thus we have 𝑃(𝑂|∗) > 𝑃(𝑂|). Weterminate the 
process when we reach a desired error or number of interactions. The re-estimate 
parameters’ process is explained in the next section.  

3.5.1 Baum-Welch Algorithm for a Single Observation Sequence  

The observation probability 𝑃(𝑂|) can be calculated by using both forward and backward 
functions, 𝑡(𝑖) and 

𝑡
(𝑖). 

 
𝑃(𝑂|) = ∑ 𝑃(𝑞𝑡

𝑁
𝑖=1 = 𝑆𝑖|𝑂, ) = ∑ 𝑡(𝑖)

𝑡
(𝑖)𝑁

𝑖=1 . 

 
To describe the re-estimate parameters’ procedure, we introduce a probability function, 


𝑡
(𝑖), the probability of being in state 𝑆i at time t given the observation sequence, as: 

 


𝑡
(𝑖) = 𝑃(𝑞𝑡  =  𝑆𝑖|𝑂, ). 

 
By applying Bayes’ rule, we have  
 


𝑡
(𝑖) =

𝑃(𝑞𝑡  =  𝑆𝑖, 𝑂|)

𝑃(𝑂|)
=
𝑡(𝑖)

𝑡
(𝑖)

𝑃(𝑂|)
=

𝑡(𝑖)
𝑡
(𝑖)

∑ 𝑡(𝑖)
𝑡
(𝑖)𝑁

𝑖=1

 

 
The probability of being in state 𝑆𝑖 at time 𝑡 and state 𝑆𝑗  at time 𝑡 + 1, 

t
(𝑖, 𝑗), is defined as 


𝑡
(𝑖, 𝑗) =  𝑃(𝑞𝑡  =  𝑆𝑖, 𝑞𝑡+1 =  𝑆𝑗|𝑂, ). 

 
Similarly, using Bayes’ rule, we have  
 


𝑡
(𝑖, 𝑗) =

𝑃(𝑞𝑡  =  𝑆𝑖, 𝑞𝑡+1 =  𝑆𝑗 , 𝑂|)

𝑃(𝑂|)
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=
𝑃(𝑂1,𝑂2,, … , 𝑂𝑡, 𝑞𝑡  =  𝑆𝑖|) 𝑃(𝑂𝑡+1,𝑂𝑡+2,, … , 𝑂𝑇 , 𝑞𝑡+1  =  𝑆𝑗| 𝑞𝑡  =  𝑆𝑖, )

𝑃(𝑂|)
 

=
𝑃(𝑂1,𝑂2,, … , 𝑂𝑡, 𝑞𝑡  =  𝑆𝑖|) 𝑃(𝑂𝑡+1,𝑞𝑡+1  =  𝑆𝑗| 𝑞𝑡  =  𝑆𝑖, ) 𝑃(𝑂𝑡+1,𝑂𝑡+2,, … , 𝑂𝑇 , 𝑞𝑡+1  =  𝑆𝑗| )

𝑃(𝑂|)
 

=
𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)

𝑡+1
(𝑗)

𝑃(𝑂|)
 

 
The calculation of 

𝑡
(𝑖, 𝑗) is displayed in Figure 6.   

 
Figure 6 

PROBABILITY FUNCTION 
𝑡
(𝑖, 𝑗) 

 
 
Clearly, we have 


𝑡
(𝑖) = ∑ 

𝑡
(𝑖, 𝑗𝑁

𝑗=1 ). 

 
Thus, we can consider 

𝑡
(𝑖) is the expected number of times that state 𝑆𝑖 is visited. Then, 

we have  
 

∑ 
𝑡
(𝑖)𝑇−1

𝑡=1  = the expected number of transitions made from state 𝑆𝑖, 

and 
 

∑ 
𝑡
(𝑖, 𝑗𝑇−1

𝑡=1 ) = the expected number of transitions from state 𝑆𝑖 to 𝑆𝑗 . 

 
We can use the following formulas to update parameter ∗of a discrete HMM: 
 

𝑝𝑖
∗ = expected number of times in state 𝑆𝑖 at time 1 =

1
(𝑖), 1 ≤ 𝑖 ≤ 𝑁 

 

𝑎𝑖𝑗
∗ =

 expected number of transitions from state 𝑆𝑖to 𝑆𝑗

expected number of transitions made from state 𝑆𝑖
=

∑ 
𝑡
(𝑖, 𝑗)𝑇−1

𝑡=1

∑ 
𝑡
(𝑖)𝑇−1

𝑡=1
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𝑏𝑗
∗(𝑘) =

expected number of times in state 𝑆𝑗and observing symbol𝑣𝑘

expected number of times in state 𝑆𝑗
=

∑ 
𝑡
(𝑗)𝑇−1

𝑡=1
|𝑂𝑡=𝑣𝑘

∑ 
𝑡
(𝑖)𝑇−1

𝑡=1

 

 
The constraints of the model parameters 𝐴, 𝐵, and 𝑝: 
 

𝑎𝑖𝑗 > 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑁  and ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 = 1, 1 ≤ 𝑖 ≤ 𝑁   (2) 

 
𝑝𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑁  and ∑ 𝑝𝑖

𝑁
𝑖=1 = 1                 (3) 

 
𝑏𝑖(𝑘) > 0, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀  and ∑ 𝑏𝑖

𝑀
𝑘=1 (𝑘) = 1, 1 ≤ 𝑖 ≤ 𝑁, 

 
are automatically satisfied because of the definition of 

𝑡
(𝑖) and we have 

𝑡
(𝑖) =

∑ 
𝑡
(𝑖, 𝑗𝑁

𝑗=1 ). 

 
Baum, Petrie, Soules and Weiss (1970) proved that with an initial parameter, each time 
we update the model’s parameters ∗using the foregoing formulas, the probability of 
observation increases, 𝑃(𝑂|∗) > 𝑃(𝑂|). The complete Baum-Welch algorithm for a 
discrete HMM with one sequence of observations is given here. 

 

Algorithm 4 

BAUM-WELCH ALGORITHM FOR A DISCRETE HMM WITH A SINGLE OBSERVATION SEQUENCE 
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For a continuous HMM, we present the case when the probability of observation at 

time 𝑡,  𝑏𝑖(𝑘) = 𝑏𝑖(𝑂𝑡), is a Gaussian distribution. In this case, 𝑏𝑖(𝑂𝑡) is the density of a 

normal distribution at the value 𝑂𝑡 , as mentioned inSection 2.1: 

 𝑏𝑖 (𝑂𝑡) = 𝐍(𝑂𝑡 , µ𝑖, 𝜎𝑖). 

And, the updated parameters are 

µ𝑖
∗ =

∑ 
𝑡
(𝑖)𝑂𝑡

𝑇−1
𝑡=1

∑ 
𝑡
(𝑖)𝑇−1

𝑡=1

 

and 

𝜎𝑖
∗ =

∑ 
𝑡
(𝑖)(𝑂𝑡 − µ𝑖)(𝑂𝑡 − µ𝑖)′𝑇−1

𝑡=1

∑ 
𝑡
(𝑖)𝑇−1

𝑡=1

, 

where (𝑂𝑡 − µ𝑖)
′ is the transpose of (𝑂𝑡 − µ𝑖), and 1 ≤ 𝑖 ≤ 𝑁. 

3.5.2 Example  

In this example, we use the Baum-Welch algorithm to re-estimate the model’s parameters 

one time to solve the third question of the ball game described in Section 2.2. First, we 

restate the ball problem. 

 Suppose that we have two boxes of balls, and each box contains two possible ball colors: 

red or blue. A player will first choose a box by using a process that satisfies the first order 

of a Markov chain with a constant transition probability matrix 𝐴. Then, the player will pick 

a ball from the selected box. Given the observations of three successive tries 𝑂 =
{𝑅𝑒𝑑, 𝐵𝑙𝑢𝑒, 𝐵𝑙𝑢𝑒}, can we find the matrix 𝐴, the probability of observing a red or blue ball in 
his first try (vector 𝑝), and the numbers of red and blue balls in each box (or the matrix 𝐵: 

probability of getting a red or blue ball from each box)? The answer is yes. We can use the 

Baum-Welch algorithm to find the answer.  

Recall that the discrete HMM has two states (𝑆1 = 𝑏𝑜𝑥 𝑜𝑛𝑒, 𝑆2 =  𝑏𝑜𝑥 𝑡𝑤𝑜) and two 

symbols for each state (𝑣1 = 𝑅𝑒𝑑, 𝑣2 =  𝐵𝑙𝑢𝑒). We choose the initial parameters, which are 

the ones that we used in the examples in Sections 3.2.2, 3.3.2 and 3.4.2,  = {𝐴, 𝐵, 𝑝}, to 

avoid recalculating forward and backward probabilities. The initial parameters are 

𝐴 = [
0.7 0.3
0.2 0.8

] , 𝐵 = [
0.75 0.25
0.40 0.60

] , and 𝑝 = (1,0). 

 
We know from the previous examples that with the initial parameters, the probability of 
observations is 𝑃(𝑂|) = 0.11814. To update the model’s parameters, we need to calculate 
the expected probabilities 

𝑡
(𝑖) and 

𝑡
(𝑖, 𝑗)and use these values to re-estimate the 
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parameters, in the hope that the new parameter will increase the likelihood of the model. 
Using the forward and backward results from the examples in Sections 3.2.2 and 3.3.2 we 
calculate 

𝑡
(𝑖) and 

𝑡
(𝑖, 𝑗) at time 𝑡. 

 
 

𝑡
(𝑖), the probability of being in state 𝑆i at time 𝑡. 

 
At time 𝑡 = 1:  


1

(1) = 1, 
1

(2) = 0 

At time 𝑡 = 2:  


2
(1) = 0.39438, 

1
(2) = 0.60562 

At time 𝑡 = 3:  


3
(1) = 0.25155, 

1
(2) = 0.74845 

 
 

𝑡
(𝑖, 𝑗), the probability of being in state 𝑆𝑖 at time 𝑡 and state 𝑆𝑗  at time 𝑡 + 1. 

 
At time 𝑡 = 1: 
 


1

(1,1) = 0.39438, 
1

(1,2) = 0.60562, 
1

(2,1) = 0, 
1

(2,2) = 0. 

 
At time 𝑡 = 2:  
 


2

(1,1) = 0.19441, 
2

(1,2) = 0.19997, 
2

(2,1) = 0.05713, 
2

(2,2) = 0.54848 

 
Now, we re-estimate the model’s parameters. 

 
 The probability of being in state 𝑆𝑖 at time 𝑡 = 1 

 

𝑝∗ = (
1

(1), 
1

(2)) = (1,0). 

 
 The state transition probability 𝐴∗ 

 

𝑎11
∗ =


1

(1,1) + 
2

(1,1)


1

(1) + 
2

(1)
=

0.39438 + 0.19441

1 + 0.39438
= 0.42226 

 

𝑎12
∗ =


1

(1,2) + 
2

(1,2)


1

(1) + 
2

(1)
=

0.60562 + 0.19997

1 + 0.39438
= 0.57774 

 

𝑎21
∗ =


1

(2,1) + 
2

(2,1)


1

(2) + 
2

(2)
=

0 + 0.05713

0 + 0.60562
= 0.09434 

 

𝑎22
∗ =


1

(2,2) + 
2

(2,2)


1

(2) + 
2

(2)
=

0 + 0.54848

0 + 0.60562
= 0.90566 
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 The matrix of observation probability 𝐵∗ 

 

𝑏1
∗(1) =

𝐼{𝑂1=𝑅𝑒𝑑}1
(1)+𝐼{𝑂2=𝑅𝑒𝑑}2

(1)+𝐼{𝑂3=𝑅𝑒𝑑}3
(1)


1

(1) + 
2

(1)+
3

(1)
=


1

(1)


1

(1) + 
2

(1)+
3

(1)
= 0.60756 

 

𝑏1
∗(2) =

𝐼{𝑂1=𝐵𝑙𝑢𝑒}1
(1)+𝐼{𝑂2=𝐵𝑙𝑢𝑒}2

(1)+𝐼{𝑂3=𝐵𝑙𝑢𝑒}3
(1)


1

(1) + 
2

(1)+
3

(1)
=


2

(1) + 
3

(1)


1

(1) + 
2

(1)+
3

(1)
= 0.39244 

 

𝑏2
∗(1) =

𝐼{𝑂1=𝑅𝑒𝑑}1
(2)+𝐼{𝑂2=𝑅𝑒𝑑}2

(2)+𝐼{𝑂3=𝑅𝑒𝑑}3
(2)


1

(2) + 
2

(2)+
3

(2)
=


1

(2)


1

(2) + 
2

(2)+
3

(2)
= 0 

 

𝑏2
∗(2) =

𝐼{𝑂1=𝐵𝑙𝑢𝑒}1
(2)+𝐼{𝑂2=𝐵𝑙𝑢𝑒}2

(2)+𝐼{𝑂3=𝐵𝑙𝑢𝑒}3
(2)


1

(2) + 
2

(2)+
3

(2)
=


2

(2)+
3

(2)


1

(2) + 
2

(2)+
3

(2)
= 1 

 

In summary, we have new parameters: 
 

𝑝∗ = (1,0), 𝐴∗ = [
0.42226 0.57774
0.09434 0.90566

] , 𝐵∗ = [
0.60756 0.39244

0.0000 1.0000
]. 

 
With the fresh set of parameters, ∗ = {𝐴∗, 𝐵∗, 𝑝∗}, using the forward algorithm we calculate 
the new likelihood of the model and have the result 𝑃(𝑂|∗) = 0.40574. We can see that 
after only one iteration, with the re-estimated parameters ∗, the probability of 
observations increases from 0.11814 to 0.40574. If we continue the re-estimation process, 
we will have an optimal solution for the problem. 

3.5.3 Baum-Welch Algorithm for Multiple Observation Sequences  

 
Algorithms of HMM for multiple observation sequences were presented by (Li, Parizeau, & 

Plamondon, 2000). In this paper, we introduce HMM’s algorithms for various observation 

sequences with an assumption that the observations are independent.  

Suppose that we have 𝐿 − observation sequence 𝑂 = {𝑂𝑡 
(1)

, 𝑂𝑡 
(2)

 , …, 𝑂𝑡 
(𝐿)

, 1 ≤ 𝑡 ≤ 𝑇}, where 

𝑂
(𝑙)

, 1 ≤ 𝑙 ≤ 𝐿 are independent. The probability of observation 𝑃(𝑂|) can be calculated 

by 𝑃(𝑂|) = ∏ 𝑃(𝐿
𝑙=1 𝑂

(𝑙)|), where 𝑃(𝑂
(𝑙)|) is probability of observation 𝑂

(𝑙)
 given . 

Using the same definitions as in the previous sections, we denote 𝛼𝑡 
(𝑙)

(𝑖), 𝛽𝑡 
(𝑙)

(𝑖), 𝛾𝑡 
(𝑙)

(𝑖), and 


𝑡 

(𝑙)
(𝑖, 𝑗) probability functions of observation sequence {𝑂𝑡 

(𝑙)
, 1 ≤ 𝑡 ≤ 𝑇}. The Baum-Welch 

algorithm for multiple observation sequences is presented here. 
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Algorithm 5 

BAUM-WELCH ALGORITHM FOR A DISCRETE HMM WITH MULTIPLE OBSERVATION SEQUENCES 

 

 

 

If the observation probability  𝑏𝑖(𝑘), defined in Section 2.1, is Gaussian,  𝑏𝑖(𝑘) = 𝑏𝑖 (𝑂𝑡) =
𝐍(𝑂𝑡 , µ𝑖, 𝜎𝑖), we will have a continuous HMM and the updated parameters are 

µ𝑖
∗ =

∑ ∑ 𝛾𝑡
(𝑙)(𝑖)𝑂𝑡

(𝑙)𝑇(𝑙)−1
𝑡=1

𝐿
𝑙=1

∑ ∑ 𝛾𝑡
(𝑙)(𝑖)𝑇−1

𝑡=1
𝐿
𝑙=1

 

and 

𝜎𝑖
∗ =

∑ ∑ 𝛾𝑡
(𝑙)(𝑖) (𝑂𝑡

(𝑙)
− µ𝑖) (𝑂𝑡

(𝑙)
− µ𝑖)′𝑇(𝑙)−1

𝑡=1
𝐿
𝑙=1

∑ ∑ 𝛾𝑡
(𝑙)(𝑖)𝑇−1

𝑡=1
𝐿
𝑙=1

, 

where (𝑂𝑡
(𝑙)

− µ𝑖)
′

is the transpose vector of (𝑂𝑡
(𝑙)

− µ𝑖), 1 ≤ 𝑖 ≤ 𝑁, and 1 ≤ 𝑙 ≤ 𝐿. 
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SECTION 4: APPLICATIONS OF HMM IN FINANCE 

4.1 Applications of HMM in Finance 

In the previous sections, we presented the basic concepts and algorithms of the original 
version of the hidden Markov model introduced by (Baum & Petrie, 1966). In this section, 
we give a brief overview of its applications in finance and actuarial fields. 
 
Recently, researchers have applied HMM for forecasting stock prices. HMM was used to 
forecast stock price for interrelated markets in (Hassan & Nath, 2005). HMM with two 
states was used to predict regimes in market turbulence, inflation and industrial 
production index by (Kritzman, Page, & Turkington, 2012). Nguyen used HMM with both 
single and multiple observations to forecast economic regimes and stock prices (Nguyen N. 
, 2014). The following year, Nguyen used HMM for single observation data to predict 
regimes of some economic indicators and made stock selections based on the performances 
of these stocks during the predicted regimes (Nguyen & Nguyen, 2015). HMM was also 
used to analyze stock market trends in (Kavitha, Udhayakumar, & Nagarajan, 2013). 
Previously, Lajos (2011) applied the HMM to predict S&P daily prices and developed a 
strategy to trade stock. And before that, Idvall and Jonsson (2008) implemented the HMM 
algorithms on foreign exchange data. 

4.2 Applications of Regime-Switching Models in Finance 

 
Applications of HMM for finance were presented in (Mamon & Elliott, 2004). However, 
many of the papers it included used the regime-switching model introduced in (Hamilton, 
1989), which is not identical to the HMM introduced in (Baum & Petrie, 1966). Based on 
the principal concepts of state sequences, Hamilton developed a regime-switching model 
for nonstationary time series and the business cycle. In the regime-switching model (RSM), 
observation variables were generated by an autoregression model, whose parameters were 
optimized by a discrete Markov chain. Many researchers have used the RSM and claimed 
that the model is the same as HMM. Although the RSM and HMM are both associated with 
regimes or hidden states, the RSM should be viewed as a regression model with regime-
shift variables. Furthermore, HMM is abroad model that allows a more flexible relationship 
between observation data and its hidden state sequence. We summarize some applications 
of RSM in finance next. 
 
Investigators have been using RSM to detect financial crises for decades. Bonnie (1998) 
investigated the dynamic impact of macroeconomic aggregates on housing prices and 
housing stocks. Elliott and Wilson (1995) used RSM to model short-term interest rates, 
which assumed that the mean-reverting level follows a finite-state and continuous-time 
Markov chain. Garcia and Parron (1996) had used three-state RSM and a regression 
method to estimate the U.S. real interest rate and inflation rate. In the early 2000s Ang and 
Bekaert (2002) applied a regime-shift model for international asset allocation. Guidolin and 
Zimmermann (2005) used a four-state RSM to study asset allocation decisions on asset 
returns. And in 2007, Erlwein and Mamon implemented HMM for a financial data set of 30-
day Canadian Treasury bill yields. More recently, in 2013, Zhu and Cheng used RSM to 
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examine macroeconomic risk level. Also in that year, Nneji, Brooks and Ward used the RSM 
for investigating the impact of the macroeconomy on the dynamics of the residential real 
estate market in the United States. 

4.3 Available HMM Software Packages 

 
Many packages of HMM’s codes are available as research tools for researchers. We list the 
two most common packages that were written in R and MatLab.  
 
HMM package in R written by Harte (2016). In this package, readers can find manual 
instructions to download and use the package to solve these three main tasks of HMM: 
calibrate model parameters, calculate the probability of observations and find the hidden 
state sequence. Some main function codes provided in Appendix B were based on the 
package. The package can be downloaded from this link: 
https://cran.r-project.org/web/packages/HiddenMarkov/index.html. 
 
Hidden Markov Model Toolbox (HMM) in MatLab by Chen (2016). This package includes 
Viterbi, HMM filter, HMM smoother, EM algorithm for calibrating the parameters of HMM, 
etc. Users can download the whole package from this link:  
http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-
machine-learning-toolbox. 

SECTION 5: HMM FOR MORTGAGE-BACKED SECURITIES EXCHANGE-TRADED FUNDS 

 
HMM has been used as a powerful tool to predict economic trends and stock prices. 

However, it has not been used by researchers for mortgage-backed securities. In this 

section, we give a brief overview of mortgage-backed securities and apply HMM to analyze 

mortgage-backed securities exchange-traded funds (MBS ETFs).  

In the HMM application portion, first we use the Baum-Welch algorithms to calibrate the 

model’s parameters and the Viterbi algorithm to locate the hidden states (or regimes) of 

observation data. Second, we describe a method of using HMM to predict the probability of 

recession states and develop a strategy to predict some MBS ETFs. Finally, we use HMM to 

select MBS ETF portfolios. 

5.1 Overview of Mortgage-Backed Securities 

Mortgage-backed securities have been used as investment instruments for investors and 
lenders since the 1980s. The MBS industry provides banks with more cash to make more 
mortgage loans and keeps mortgage rates competitive and mortgages readily available. 
Many exchange-traded funds that focus exclusively on mortgage securities, called MBS 
ETFs, were formed to make mortgage investments more feasible for individual investors. 
 

https://cran.r-project.org/web/packages/HiddenMarkov/index.html
http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox
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The U.S. housing market reached its peak in mid-2006, when it began declining. According 
to a 2007 report in the Economist (2007), from 1997 to 2006, the price of a typical 
American house increased by 124 percent. The U.S. housing market experienced the 
subprime mortgage crisis during the economic recession of December 2007 to June 2009. 
After seven years of declining rates, from 6.825 percent in June 2006 to 3.682 percent in 
May 2013, the 30-year fixed-rate mortgage increased to 4.004 percent in August 2015. The 
changes in interest rates affect MBS in opposite directions. If interest rates increase, MBS 
prices will decrease. Conversely, when interest rates drop, MBS securities will rise.  
 
MBS and mortgage rates are driven by many economic factors, such as gross domestic 

product, inflation rate and interest rate. Researchers have investigated the performance of 

some economic indicators to evaluate the MBS. Zenios (1993) considered both the future 

interest rate and the prepayment activity of the MBSs to simulate an MBS portfolio. 

Calhoun and Deng (2002) analyzed the results of using different loan-level statistical 

models for fixed and adjustable rate mortgages. Kau, Keenan, Muller and Epperson (1992) 

investigated many intricacies of a fixed-rate mortgage model and concluded that “default 

always lowers the value of the mortgage to the lender, whereas none financial prepayment 

always raises it." 

In the following sections, we select some MBS ETFs and use HMM to investigate their 

behaviors. 

5.2 Data Selection 

As mentioned in Section 5.1, MBS have been known to investors since the 1980s. However, 

individual investors had limited access to MBS until the mortgage crisis in 2007. 

Several ETFs that focus exclusively on MBS were provided for trading by many brokers. In 

this research, we collect historical data of MBS ETFs that are actively traded on the market, 

which can be downloaded from https://finance.yahoo.com. These MBS ETFs are listed in 

Table 1.  

The data were gathered in three frequencies: daily, weekly and monthly. For each of these 

ETFs we have four observation sequences: “close,” “open,” “low” and “high” prices. We 

assume throughout this paper that the four observation sequences are independent. 

You can see from Table 1 that most of the MBS ETFs were incepted recently. Therefore, to 

show applications of HMM to MBS ETFs in the following sections (5.3, 5.4 and 5.5), we will 

use the iShare MBS ETF known as MBB, because this ETF has long enough historical data to 

be useful.  

 

 

 

 

https://finance.yahoo.com/
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Table 1 

LIST OF MBSETFs 

 

 

 

 

 

 

 

 

5.3 Using HMM to Find the Hidden States of Observations 

In this section, we present the results of using HMM to find hidden states (or regimes) of 
fund MBB.  
 
The observation price of MBB at time 𝑡 is a continuous random variable. We assume that 
the observation probability 𝑏𝑖(𝑂𝑡) = 𝑃(𝑞𝑡 = 𝑆𝑖, 𝑂𝑡|) is the density of the normal 
distribution with mean µ

𝑖
 and standard deviation 𝑖  at point 𝑂𝑡, 1 ≤ 𝑖 ≤ 𝑁. Therefore, the 

symbol 𝑣𝑘 is omitted in the continuous HMM, and the parameter of the model is  =
{𝐴,µ, 𝜎, 𝑝}.  
 
To use HMM, we first need to choose observation data and the number of states, 𝑁. To 
make it simple, we just use one observation series, the “close” price of MBB, and we choose 
two, three or four states. In the two-state HMM, we assume that the observation data have 
two states (or regimes): growth and regression. In three-state HMM we assume that an 
observation sequence has three states: growth, moderate, and regression. In four-state 
HMM, we suppose an observation sequence has four states: strong growth, weak growth, 
weak regression, and regression. The HMM models that we use in this section are 
continuous and for a single observation sequence. 
 
Now, let’s explore how to use the two-state HMM to find the hidden state sequence for the 
MBB’s close price. Suppose the observation data, 𝑂, is the MBB’s weekly prices from March 
16, 2007, to October 26, 2016. 
 
We choose initial parameters  = {𝐴,µ, 𝜎, 𝑝} for the Baum-Welch algorithm for 𝑁 state 
HMM as: 

Broker Trading Symbol  Issued Date 

 

iShares 

MBB 

GNMA 

CMBS 

03/13/2007 

02/14/2012 

02/14/2012 

Vanguard VMBS 11/23/2009 

Barclays MBG 01/30/2009 

FlexShares MBSD 01/04/2016 

First Trust LMBS 11/05/2014 
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𝐴 = (𝑎𝑖𝑗) = (
1

𝑁
) , µ𝑖 = 𝑚, 𝜎𝑖 = 𝑠. 𝜀𝑖, 𝑝 = (1,0, … ,0), 𝑖 = 1, … , 𝑁, 

 
where 𝑚 and 𝑠 are the mean and standard deviation of the observation sequence 𝑂, 
respectively, and 𝜀 is a random number from the standard normal distribution. 
 
Researchers can choose initial parameters for the Baum-Welch in different ways as long as 
they satisfy the conditions of 𝐴 in (2) and 𝑝 in (3) presented earlier. 
 
First, we use the Baum-Welch algorithm with two states, 𝑁 = 2, to calibrate HMM’s 
parameters,  = {𝐴,µ, 𝜎, 𝑝}. The Baum-Welch algorithm gives us the following results: 
 

 Transition matrix 𝐴: 

𝐴 = [ 0.9932 0.0068
0.0147 0.9853

] 

 
 Means and variances of two observation probability distributions for two states: 

 
µ1 = 108.54 𝜎1 = 0.97 
µ2 = 103.54 𝜎2 = 2.40

 

 
 Initial probability of being in state 0 or 1 at time 0: 𝑝 = (0,1). 

After calibrating the HMM’s parameters, we have to define the two states based on the 

results. In general, stocks during the growth state will have higher returns and lower 

volatilities than those during the regression state. However, the two conditions may not 

happen at the same time, so we define state 0and state 1based on the ratio of the means 

and standard deviations of the two normal distributions.  

 

We define state 1as the state that has a lower ratio 
µ𝒊

𝝈𝒊
, 𝒊 = 𝟏, 𝟐, and state 0 as the state that 

has a higher ratio. In this case, we have µ𝟏 > µ𝟐 and 𝝈𝟏 < 𝝈𝟐. Thus, we choose state 0 as the 

state that corresponds with normal distribution 𝐍(𝟏𝟎𝟖. 𝟓𝟒, 𝟎. 𝟗𝟕), and state 1 as the state 

that corresponds with normal distribution 𝐍(𝟏𝟎𝟑. 𝟓𝟒, 𝟐. 𝟒). 

 

Finally, we use the Viterbi algorithm with the calibrated parameters to find “the fittest” 
hidden states of the observation data. The results are shown in Figure 7. Results for weekly 
and monthly data are presented in Figures 1 and 2 in the Appendix. We can see from Figure 
7 that HMM captures well the hidden states of observation data. MBB price was in state 1 
(low returns and high volatilities) during the economic recession time 2007-2009, the first 
quarter of 2011 and from the second quarter of 2013 to the first quarter of 2014. 
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Figure 7 

FINDING TWO STATES OF MBB DAILY PRICE USING THE VITERBI ALGORITHM  

 

 
 
 
Similar to the two-state HMM, we have the following results of the three-state and four-
state HMM. 
 
Results of using three-state HMM to calibrate the model’s parameters and find hidden 
states of MBB observation: 

 Transition matrix 𝐴: 

𝐴 = [
0.9565 0.0356 0.0079
0.0070 0.9978 0.0152
0.0063 0.0258 0.9979

] 

 
 Means and variances of three observation probability distributions (three normal 

distributions): 
µ0 = 108.81 𝜎0 = 0.78
µ1 = 105.90 𝜎1 = 1.01
µ2 = 101.13 𝜎2 = 1.73

 

 
 Initial probability of being in state 0, 1, or 2at time 0: 𝑝 = (0,0,1). 

 
The hidden sequence of the observations using the three-state HMM is presented in Figure 
8. 
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Figure 8 

FINDING THREE STATES OF MBB DAILY PRICES USING THE VITERBI ALGORITHM  

 

 
 

 
Results of using four-state HMM to calibrate the model’s parameters and find hidden states 
of MBB observation: 
 

 Transition matrix 𝐴: 

𝐴 =  [

    0.6885 0.2919
   0.7251 0.2677

0 0.0196
0.0072 0

0.0087 0
0 0

0.8594 0.1119
1 0

] 

 
 Means and variances of four observation probability distributions (four normal 

distributions): 
 

µ0 = 109.39 𝜎0 = 0.47
µ1 = 107.79 𝜎1 = 0.55
µ2 = 105.46 𝜎2 = 0.78
µ3 = 101.12 𝜎3 = 1.37

 

 
 Initial probability of being in state 0 to 3 at time 0: 𝑝 = (0,0,0,1). 

 
The “best fit” hidden state sequence using the four-state HMM is displayed in Figure 9. 
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Figure 9 

FINDING FOUR STATES OF MBB WEEKLY PRICES USING THE VITERBI ALGORITHM  

 
 

 
 

The results show that we can use HMM to find hidden states of historical observation data. 

Furthermore, we can use HMM to predict the probability of being in different states in the 

future. We present the technique in the next section. 

5.4 Using HMM to Predict Probability of Being in the Recession State 

In this section, we use HMM to predict the probability of MBB being in the recession state. 
We use HMM for both single observation data and multiple observation data in this section. 
For single observation data we use MBB “close” price, and for multiple observation data we 
use MBB “close,” “open,” “low” and “high” prices.  
 
To make the predictions and model validations, we use two-year MBB daily data from 
October 16, 2014, through October 26, 2016. We use fixed-length windows of one-year 
data, with each window having 252 consecutive trading days, to predict the probability of 
MBB being in recession the next day. The first data window, from October 30, 2014, to 
October 27, 2015, was used to predict the probability of being in the recession state on 
October 28, 2015.  
 
We first use the Baum-Welch algorithm to calibrate HMM’s parameters and then define 
states 0 and 1 based on the calibrated parameters of the two normal distributions: µ, 𝜎. The 



  36 

 

 Copyright © 2017 Society of Actuaries 

recession state would have lower µ/𝜎 compared to those of the “bull” market. Using the 
defined states and based on the first-order property of the Markov chain of HMM’s state 
sequences, we can predict probability of being in state 1 by using the 

𝑡
(𝑖, 𝑗) function. The 

observation probability was calculated by using transition matrix 𝐴 and the normal 
probability distribution corresponding to the recession state. After the first prediction, we 
will move the training window up one day and use the new data set to make the second 
prediction and so on. The moving window technique is presented in Figure 10. 
 
Figure 10 

 MOVING WINDOW FOR PREDICTION 

 

The predicted probability of being in the 
recession state for a one-year period is 
presented in Figures 11 and 12. In Figure 
11 we use one observation sequence, the 
“close” price of MBB, and in Figure 12 we 
use four observation sequences: “close,” 
“open,” “low” and “high” price. 
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Figure 11 

PREDICTED PROBABILITY OF BEING IN A “BEAR” MARKET (STATE 1) USING ONE OBSERVATION SEQUENCE 

 

 
 

Figure 12 

PREDICTED PROBABILITY OF BEING IN A “BEAR” MARKET (STATE 1) USING FOUR OBSERVATION 

SEQUENCES 

 
 

5.5 Using HMM to Predict Prices and Trade MBSETFs 

The accuracy of a prediction model is the most important factor. HMM will perform 
differently based on the number of hidden states. Therefore, to forecast the MBB’s prices 
using HMM, we have to choose the number of states first. In this section, we use the two 
standard criteria—the Akaike information criterion (AIC) (Akaike, 1974) and the Bayesian 
information criterion (BIC) (Schwarz, 1978)—to choose the best model among the HMM 
with two, three or four states. Then we will use HMM with two, three or four states to 
predict MBB’s prices.  
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5.5.1 Model Selection 

Choosing a number of hidden states for HMM is a critical task. We use two common criteria, 
the AIC and the BIC, to evaluate the performances of HMM with different numbers of states. 
The criteria measure how well a model fits with given data by evaluating the log likelihood 
of the model. The likelihood, 𝐿, of an HMM is the probability of observations given the 
model’s parameters 

𝐿 = 𝑃(𝑂|). 
 
The two criteria are suitable for HMM because in the model training algorithm, the Baum-
Welch algorithm, the expectation–maximization (EM) method was used to maximize the 
log likelihood, ln(𝐿), of the model. The AIC and BIC are calculated using the following 
formulas: 

AIC = −2 ln(𝐿) +  2𝑘 
BIC = −2 ln(𝐿) + 𝑘ln(𝑀) 

 
where 𝐿 is the likelihood of the model, 𝑀is the number of observation points, and 𝑘 is the 
number of estimated parameters in the model. In this paper, we assume that the 
distribution corresponding to each hidden state is a Gaussian distribution. Therefore, the 
number of parameters, 𝑘, is formulated as 𝑘 = 𝑁2 + 2𝑁 − 1, where 𝑁is the number of 
states used in the HMM. The model with lower AIC or BIC will perform better. In the AIC if 
more parameters are added to the model, the second term is bigger and the log likelihood 
of the model increases, which makes the first term smaller. However, when the sample size 
is large, the log likelihood dominates the penalty term, 2𝑘. Thus, the AIC will prefer the 
model with more parameters.  
 
In the BIC, the penalty term (the second term) includes the log of sample size and number 
of parameters. Thus, similar to the AIC, selecting the “best fit” model using BIC is equivalent 
to choosing the model with the largest log likelihood. 
 
We use the moving training window that was described in Section 5.4 to make calibrations 
and plot the results in Figures 13 and 14.The results show that HMM with four states is 
more accurate han HMM with two or three states.  
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Figure 13 

AIC OF HMM WITH DIFFERENT NUMBER OF STATES 

 

 
 

Figure 14 

BIC OF HMM WITH DIFFERENT NUMBER OF STATES 

 
 
In the next section, we will use HMM with two, three and four states to predict MBB price 
and compare the predicted errors to see if the results are consistent with the AIC or BIC 
test. 

5.5.2 Price Prediction 

 
In this section, we use HMM and historical price data for MBB to predict its future prices 
and compare the predictions with the market prices. We forecast MBB’s prices using HMM 
with different numbers of states and calculate the mean absolute percentage errors 
(MAPE) of the estimates, 
 

MAPE =
1

𝑁
∑

|𝑀𝑖−𝑃𝑖|

𝑀𝑖

𝑁
𝑖=1 , 
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where 𝑁 is the number of predicted points, 𝑀 is market price and 𝑃 is the predicted price 
of a stock. We use HMM with multiple observation sequences (open, low, high and close 
price) to predict future close price.  
 
To do this, we divided MBB daily data from March 16, 2007, to October 26, 2016, into three 
parts: one part for back tracking, one part for model training and one part for model 
validating. Similar to Section 5.4 we use data from a one-year time period (252 trading 
days) for a training window, and for convenience, we use one-year data, from October 28, 
2015, to October 26, 2016, for model testing.  
 
The prediction process can be divided into three steps: 
 

1. Calibrate HMM's parameters and calculate the likelihood of the model.  
2. Find a day in the past that has a similar likelihood to that of the recent day.  
3. Use the difference of stock prices on the “similar" day in the past to predict future 

stock prices.  
 
This prediction approach is based on the work of Hassan and Nath (Hassan & Nath, 2005). 
In order to predict the ETF price for October 28, 2015, we use a one-year data window 
from October 30, 2014, to October 27, 2015. 
 
In the first step, we use the Baum-Welch algorithm to calibrate the parameters for HMM 
and use the forward algorithm to calculate the probability of observation for the data set.  
 
In the second step, we move the training data backward by one day, which is called a 
tracking data window, and use calibrated parameters,, to calculate the probability of the 
tracking date window. We continue to move the tracking window backward until we find 
the “similar” tracking data window that has very close probability of observation with the 
training data window (the chosen error is 10−6).  
 
In the last step, we use the difference, 𝛿, between the prices on the end date of the “similar” 
tracking window and the next consecutive day to predict the price of MBB for October 28, 
2015. We assume that the change of MBB’s price in October 27, 2016, and October 28, 
2016, is equal to 𝛿; thus the predicted price equals the price on October 27, 2016, plus 𝛿. 
For the second prediction, we move the training window up one day and repeat the 
process. The prediction process is presented in Figure 15. 
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Figure 15 

PRICE PREDICTION PROCESS 

 
 

The results of price predictions with two-, three- and four-state HMM are presented in 

Figures 16-18. We can see from the figures that the HMM with three or four states is more 

accurate than the HMM with two-states in stock price predictions. We calculate the mean 

absolute percentage errors, MAPE, of the predictions using these three models and present 

the results in Table 2. 

 

Figure 16 
PRICE PREDICTION FROM OCTOBER 28, 2015, TO OCTOBER 26, 2016, USING TWO-STATE HMM 
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Figure 17 

PRICE PREDICTION FROM OCTOBER 28, 2015, TO OCTOBER 26, 2016, USING THREE-STATE HMM 

 

 

Figure 18 

PRICE PREDICTION FROM OCTOBER 28, 2015, TO OCTOBER 26, 2016, USING FOUR-STATE HMM 

 

 

Table 2 

PRICE PREDICTION ERRORS USING HMM 

Number of states 2  3  4  

MAPE 0.001291 0.001316 0.001239 

 

The results in Table 2 show that the four-state HMM gave the smallest error for predicting 

MBB’s prices. The result is consistent with the result in Section 5.5.1: the AIC and BIC 

results indicated that HMM is most accurate with four states. 
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5.5.3 Model Validations 

We now compare HMM with the standard forecast model, the historical average model for 

stock return predictions. Among the eight MBSETFs listed in Table 1, we can choose only 

five that have long enough historical data to implement the HMM. The five MBS ETFs are 

MBB, GNMA, CMBS, VMBS and MBG. We use daily and weekly prices of the ETFs. Due to the 

limitations of data, we use a training window of 52 weeks for weekly data (one-year period 

from November 2, 2015, to October 24, 2016) and training windows of 100 days (from June 

7, 2016, to October 26, 2016) and 252 days (from October 28, 2015, to October 26, 2016) 

for daily data. For convenience, the length of the out-of-sample predictions equals the 

length of the training window. That means we predict prices for 52 weeks, 100 days and 

252 days. For each ETF, we use its four observation sequences—the open, low, high and 

close prices—to predict the close price in future time. 

With a training window size 𝑚, the historical average model (HAM) is defined as 

𝑟𝑚+𝑡 =
1

𝑚+𝑡−1
∑ 𝑟𝑖

𝑚+𝑡−1
𝑖=1 . 

Since the moving average model works well only for a stationary series, we use 𝑟𝑡 is as the 

total return of stock at time 𝑡, 𝑟𝑡 = 𝑃𝑡 − 𝑃𝑡−1, where 𝑃𝑡  is price at time 𝑡 of a stock. After 

using HAM to predict return, we use the formula 𝑃𝑡 = 𝑃𝑡−1 + 𝑟𝑡 to obtain the predicted 

price of the stock.  

The MAPE of the estimates, defined in Section 5.5.2, is used to compare the performances 
of HMM and HAM. 

MAPE =
1

𝑁
∑

|𝑀𝑖 − 𝑃𝑖|

𝑀𝑖

𝑁

𝑖=1

 

Errors of stock price predictions using the two models are presented in Table 3. 

 

Table 3 

ERRORSOF OUT-OF-SAMPLE PREDICTED PRICES USING HMM vs. HAM 

ETF   Model 

100Days 

(6/7/16-

10/26/16) 

252 Days 

(10/28/2015-

10/26/2016) 

52 Weeks 

(11/2/2015-

10/24/2016) 

MBB   HAM 0.0007 0.0009 0.0018 

     HMM 
0.0005 0.0009 0.0014 

GNMA  HAM 
0.0013 0.0016 0.0021 

      HMM 
0.0009 0.0016 0.0020 
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Based on the error estimator MAPE, the HMM beats the HAM in predicting the ETFs in most 

of the cases. In only two cases—forecasting VMBS and CMBS using a 252-day training 

window—did the HAM outperform the HMM. However, by definition the MAPE measures 

the mean of absolute percentage errors. It does not tell us the accuracy of the predictions 

according to the real observation trends.  

One of the disadvantages of the moving average method is it is not sensitive to a sudden 

change of the momentum of the prices. Therefore, it is not the desired candidate to predict 

trading signal or trends of observations. By comparison, HMM is based on regimes of 

observation sequences and the probability of jumping from one state to another. Thus, 

HMM is a good model to capture the regime shifts of observations.  

In the next section we investigate the efficiencies of HMM and HAM in predicting trading or 

trending signals. 

5.5.4 Trading Mortgage-Backed Securities 

We now apply the two models, HMM and HAM, to trade the MBS ETFs based on the 

predicted returns. Similar to Section 5.5.3, we will trade these five ETFs—MBB, GNMA, 

CMBS, VMBS and MBG—in three different periods: 100 days, 252 days for daily trading and 

52 weeks for weekly trading. We assume that we buy or sell the ETFs by the close prices 

without transaction fee, and we buy or sell 100 shares in each trading. The trading strategy 

is based on the predicted prices in Section 5.5.3. If the model predicts that the price of the 

ETF goes up, we will buy it and hold until the model predicts that the price goes down. 

Results of the trading are summarized in Table 4. The table presents the percentage 

earning in the whole period of trading using HMM and HAM.  

 

 

 

VMBS  MA 
0.0009 0.0010 0.0017 

     HMM 
0.0007 0.0011 0.0013 

CMBS  HAM 
0.0021 0.0022 0.0047 

     HMM 
0.0017 0.0023 0.0038 

MBG   HAM 
0.0030 0.0016 0.0027 

     HMM 
0.0027 0.0014 0.0018 
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Table 4 

COMPARISION TRADING MBS ETFs USING HMM AND HAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the results in Table 4, we see that HMM captures price changes well. Therefore, it 

yields a higher return than the moving average model in trading the ETFs. The results show 

that HMM is a promising model for stock trading. 

SECTION 6: CONCLUSIONS 

 

In this paper, we presented an introduction of the hidden Markov model: the historical 

developments of the model, its basic elements and algorithms, and applications of the 

model in finance and actuarial fields. We presented simple examples to explain the model’s 

concepts and three main algorithms. We then applied HMM for mortgage-backed securities 

exchange-traded funds, MBS ETFs. The Baum-Welch algorithm was used to calibrate the 

model’s parameters, and the Viterbi algorithm was used to find the hidden state sequence 

of the observation data. We used HMM with two, three, and four states to predict the 

probability of MBB, an iShares MBS ETF, being in the recession state, using one observation 

ETF   Model 

100 Days 

(6/7/16-

10/26/16) 

252 Days 

(10/28/2015-

10/26/2016) 

52 Weeks 

(11/2/2015-

10/24/2016) 

MBB   HAM 
    0.23% -0.91% 0.03% 

     HMM 
1.96% 2.42% 2.12% 

GNMA  HAM 
0.24% -0.47% -0.75% 

      HMM 
3.98% 4.73% 2.81% 

VMBS  HAM 
0.28% -0.86% -0.02% 

     HMM 
2.33% 4.39% 2.17% 

CMBS  HAM 
0.17% -0.95% 0.29% 

     HMM 
3.53% 9.62% 5.35% 

MBG   HAM 
-0.07% 0.00% 0.00% 

     HMM 
2.18% 7.61% 3.91% 
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sequence and four observation sequences. The results showed that HMM is a good model 

for forecasting observations’ regimes. The more observation sequences we used, the better 

the predictions were.  

Before applying the model for predicting and trading the MBS ETFs, we used the two 

standard goodness-of-fit tests, the AIC and the BIC, to choose the best HMM (or the number 

of states for the HMM) for the ETFs. The results showed that HMM with four states is the 

best model among the two-, three-, or four-state HMM. Based on the model selection 

results, we used the four-state HMM with multiple observation sequences to predict the 

ETFs’ prices. We compared the HMM with the historical average model, HAM, in predicting 

the prices. The results showed that the HMM outperformed the HAM for various training 

windows and out-of-sample time periods. The trading results based on the predicted prices 

showed that the HAM was worse for trading because it failed to capture the trading signals 

or the future trends of the underlying access. By comparison, the HMM worked well in 

trading the MBS ETFs because it predicted precisely the future returns of the funds. 

In conclusion, the HMM is a stochastic model that is based on the constant transition matrix 

of observations’ hidden states. It has many applications in finance and actuarial sciences. It 

is a potential model for predicting extreme regimes of observation sequences and for 

forecasting prices and trading indexes.  
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APPENDIX A: RESULTS 

Using MBB weekly data and the Baum-Welch algorithm to calibrate parameters for two-
state HMM, we get the following results: 
 

 Transition matrix 𝐴: 

𝐴 = [ 0.9932 0.0068
0.0147 0.9853

] 

 
 Means and variances of two observation probability distributions (two normal 

distributions): 
 

µ0 = 108.56 𝜎0 = 0.94 
µ1 = 103.59 𝜎1 = 2.40

 

 
 Initial probability of being in state 0 or 1 at time 0: 𝑝 = (0,1). 

 
 
The simulation of the two-state sequence of the weekly MBB is presented in Figure 1. 

 

Figure 1 

FINDING TWO STATES OF MBB WEEKLY DATA USING THE VITERBI ALGORITHM  

 

 

 

 

Using MBB monthly data and the Baum-Welch algorithm to calibrate parameters for two-
state HMM, we have the following results: 

 Transition matrix 𝐴: 

𝐴 = [ 0.9687 0.0313
0.0619 0.9381

] 
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 Means and variances of two observation probability distributions for two states: 
 

µ1 = 108.72 𝜎1 = 0.98 
µ2 = 103.94 𝜎2 = 2.41

 

 
 Initial probability of being in state 0 or 1 at time 0: 𝑝 = (0,1). 

 

The simulation of the two-state sequence of the monthly MBB is presented in Figure 2. 

 

Figure 2 

FINDING HIDDEN STATES OF MBB MONTHLY DATA USING TWO-STATE HMM  
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APPENDIX B: R CODE 

The R code file is available at this link:  

https://www.soa.org/files/research/projects/2017-hidden-markov-model-codes.zip   

https://www.soa.org/files/research/projects/2017-hidden-markov-model-codes.zip
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