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Abstract2 
 
 This paper shows how the results of copula based capital aggregation models can always 
be locally approximated by relatively simple formulas. The paper defines the concepts of 
diversification factor and tail correlation matrix and describes methods for estimating these 
quantities from simulated data. We show how these ideas can be put into practice as both 
computational shortcuts and presentation tools. Some examples are then developed, which 
suggest that, when copula based models are used to aggregate capital, two new phenomena 
emerge: a) diversification benefits are reduced because of additional tail dependence in the 
copula; and b) diversification benefits are increased when aggregating risks that have finite 
variance and the model does not have too much symmetry. Since few of the risks held by a life 
insurer are so heavy-tailed that they have infinite variance, the paper concludes by arguing that 
simple, correlation matrix-based, capital aggregation formulas are more defensible than 
previously thought. 
 
 

                                                           
2 The views and opinions expressed in this paper are those of the author and not AEGON NV.  
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Introduction 
 

This paper discusses the top-down economic capital aggregation process used by many 
financial institutions with a wide variety of risks, business units and geographic territories. 
Assuming we have n risks nXX ,...,1 ,  and we have determined stand-alone capital requirements 

ncc ,...,1 for each risk, then the problem is to determine a reasonable capital requirement 
),...,( 1 nccCC = for the aggregate risk ∑=

i
iXX  . A simple, and widely used, approach is to 

choose a correlation matrix ijρ  and assume that we can use the formula:  

∑=
ji

jiijn ccccC
,

1 ),...,( ρ  

to get the required result. 
 
 

Two common criticisms of this approach are:  
 

1. The model is too simple. If we use “ordinary” correlations in the formula, we may 
not capture the tail behavior of the risks appropriately. 

 
2. The model assumes capital can be moved easily across business unit, legal entity 

or geographic boundaries.3  
 
The main point of this paper is to argue that the first problem is not as severe as it might 

first appear. The second problem is, strictly speaking, outside the scope of the current paper other 
than to note that, if we can dispose of Problem 1, then Problem 2 is the real issue. 
 

The main steps of this paper’s argument are as follows: 
 

1. The standard aggregation approach makes two, potentially offsetting, theoretical 
errors. 

 
a. It ignores the additional correlation that may be present in extreme events 

as articulated in Problem 1. 
 
b. It also ignores an additional diversification benefit that can arise when 

aggregating risks that are not too heavy-tailed in a sense to be made more 
precise later.  

 
Section 1 of this paper is devoted to developing this argument. 

 
2. As a practical matter, many of the risks faced by a financial institution are not 

very heavy-tailed. One possible exception is operational risk. The bulk of the 
evidence to support this statement is cited in Appendix 3. The two theoretical 

                                                           
3 See, for example, Filipovic, D., and Kupper, M., “Optimal Capital and Risk Transfers for Group  

Diversification.” Preprint dated July 2006. 
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issues in point (1) above will therefore tend to offset when we build more 
complex aggregation models. Numerical examples presented in Section 2 of this 
paper support this point of view. 

 
3. As a practical matter, many of the parameters used in aggregation models are not 

known with a great deal of precision. As we build more complex models, we must 
consider more, poorly known, parameters. Unless we can overcome the 
model/parameter uncertainty issues, it doesn’t make sense to make the models too 
complicated. Furthermore, one of this paper’s technical results is that we can 
always locally approximate a complex model with a simple one as described 
below. 

 
Apart from the high level argument outlined above, this paper also develops a number of 

technical tools that anyone doing quantitative work in this area should find useful 
 

1. Under the reasonable assumption that the true capital aggregation formula 
satisfies the scaling property  ),...,(),...,( 11 nn ccCccC λλλ = , we show that there is 
always a family of local formula approximations, valid in a neighborhood of the 
point ncc 0

1
0 ,..., , of the form: 

 

)2(),...,(
2
1

)1(),...,(

0
1

0
22

,

0
1

0

n

ji
ij

ji
jiij

n

i
i

i
ii

cc
cc

CDccDC

cc
c
CDcDC

∂∂
∂

=≈

∂
∂

=≈

∑

∑
 

 
For a function with the assumed scaling property, the first formula approximation 
is equivalent to a first order Taylor expansion about any point. In this paper we 
call the quantities iD  the diversification factors. 
 
Under the same scaling assumption, the second formula has second order contact 
with exact capital function. We will call the matrix ijD  the tail correlation matrix 
at the point where it was calculated. The tail correlation matrix is equal to the 
ordinary linear correlation matrix if the underlying risk model is elliptical4 in the 
sense of McNeil, Frey and Embrechts (MFE). We hope the examples presented in 
this paper will convince the reader that the tail correlation matrix is a useful tool 
for presenting results. 
 

                                                           
4 McNeil, A.J., Frey, R., and Embrechts, P. 2005. Quantitative Risk Management. Princeton. Section 3.3 develops 

the basic theory of elliptical distributions. The multivariate normal and multivariate Student’s-t distributions are 
both examples of elliptical models. 
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This tail correlation formula looks just like the one used in the standard 
correlation matrix approach, but there are some important differences.  

 
• In general, the formula (2) above is local in the sense that it is only valid 

in some neighborhood of the point where it was determined. The examples 
presented later in the paper suggest this is not an obstacle to practical 
application. 

 
• The diagonal elements of the tail correlation matrix need not be equal to 

one, and the off diagonal elements are not constrained to lie between +1 
and -1. We interpret this phenomenon later to mean that, in the tail of a 
loss distribution, risks can be more or less correlated with themselves. 
Depending on one’s point of view, this is either an intriguing idea or a 
presentation nightmare. One of this paper’s objectives is to help the reader 
get comfortable with this broader concept of a correlation matrix. 

  
2. The paper presents tools to estimate the diversification factors and tail correlation 

matrix from real or simulated data. Two methods of estimation are described, 
which we call the direct and indirect methods, respectively. Using these tools can 
be very easy in some circumstances, but, when the risks are heavy-tailed, a large 
number of samples can be required to get accurate estimates. In general, 
estimating the tail correlation matrix requires more data than estimating the 
diversification factors for the same level of precision. 

 
3. The paper also develops a variation on traditional extreme value theory. For risks 

with finite variance, we define the tail shape function )(uξ  by:  
 

10,
)(

)]()([)(21
2

<<
−

=− u
uCTV

uVaRuCTEuξ  

 
where )(uCTE  is the conditional tail expectation at probability level u; )(uVaR  is 
the value at risk; and )(uCTV  is the conditional tail variance. If we know the tail 
shape function for all u, then we can determine the risk up to location and scale. 
For a Pareto distribution, this quantity is a constant. The example in Section 2 
shows that if different marginal models are parameterized to have the same 
location, scale and tail shape behavior for u in a neighborhood below, say .995, 
then they will all produce similar results when estimating capital measures such as 
VaR(.995) or CTE(.99) for the aggregate risk. The key point here is that it is the 
behavior of the tail shape below a certain threshold that drives the aggregation 
results. The theory underlying this result is detailed in Appendix 3. 
 
The main implication of this result is that we do not need to know every detail 
about the marginal probability distribution of the component risks. Knowledge of 
location, scale and the tail shape function in a neighborhood below a point 
near 995.=u  appear to be the most important properties. 
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The remainder of this paper is structured as follows. Following this introduction is a 
section devoted to explaining the tool development in more detail. The section starts by looking 
at sufficient conditions for tail correlation to equal ordinary correlation and then goes on to look 
at an example of a capital aggregation problem, which is simple enough to be studied in closed 
form but is not elliptical. This provides a simple laboratory for developing tail correlation 
intuition. The section then introduces the tools needed to estimate tail correlation from simulated 
data and provides some examples.  
 

The second section of the paper develops the model building scenario described earlier. 
This is the core of the paper. A reader willing to accept most of the results in the tool 
development section can understand this section after skimming the examples in Section 1. We 
walk through a model building scenario starting with a simple, elliptical, model where tail 
correlation and ordinary correlation coincide, and then, in several steps, add complexity in the 
form of more realistic marginal distributions and a more conservative dependency structure. The 
example shows that making the dependency structure more conservative does make the end 
result more conservative, but this conservatism can be offset by an additional diversification 
benefit that arises from the assumption that the individual component risks have a variety of 
different tail behaviors. We actually have to work very hard to come up with an answer that is 
more conservative than the starting point. The section ends by asking how well we know the 
parameters being used and whether the increase in model complexity is genuinely justified. 
 

The third section of the paper develops the conclusions in more detail. The author’s first 
conclusion is that, unless we think we know the models and parameters extremely well, it is hard 
to justify introducing a very complex model. The simple correlation model is capable of doing a 
better job than it may have been given credit for. The second conclusion is that, if we do know 
how to improve the model, or simply want to add some conservatism, any additional complexity 
can be approximated by a tail correlation matrix that looks like an ordinary correlation matrix, 
except for the fact that it may not have ones on the diagonal. 

 
The fourth and final section contains a number of technical appendices related to tool 

development. These appendices are intended for an audience of specialists who might wish to 
reproduce some of the results reported in this paper. 
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1. Tail Correlation as a Presentation Tool 
 
1.1 Homogeneity and the Law of Large Numbers 
 

A function ),...,( 1 nccCC = is said to be homogeneous of degree 1 if it satisfies the 

scaling law ),...,(),...,( 11 nn ccCccC λλλ =  for all 0>λ . The standard formula ∑=
ji

jiij ccC
,

ρ is 

an example of such a function. Since this paper will assume that all capital aggregation models 
obey this rule, we briefly indicate why this is reasonable. 
 

Suppose we have sold one-year term insurance contracts to N identical and independent 
lives. Assume the mortality rate Q for each member of this group of lives is itself a random 
variable with mean qQE =][ . The total death claims to be experienced over the year are just the 
sum of N independent Bernoulli risks. The expected number of claims is just:  
 

,][ NqDE =  
 
while the variance of the claim count distribution can be calculated from: 
 

).()1()1(
],[)]1([

]],|[[]]|[[][

QVARNNqNq
NQVARQNQE

QDEVARQDVAREDVAR

−+−=
+−=
+=

 

 
 If we take the number of contracts to be a measure of “exposure” and we take standard 
deviation to be a reasonable measure of risk, then we can write: 
 

.,)(

)()/11()1()(

∞→≈

−+
−

=

NasQVARN

QVARN
N

qqNDStdev
 

 
We see that while the pure fluctuation risk will diversify away, any risk associated with 

the claim rates themselves simply grows with the exposure. The assumption of homogeneity is 
therefore roughly equivalent to the assumption that the law of large numbers can be applied, and 
there is no more risk that can be diversified away simply by scaling up the block of business. 
This is a reasonable assumption for a large insurer with sound risk management practices, such 
as the appropriate use of reinsurance, to limit the effect of large individual contracts. 
 

Once the assumption of homogeneity has been made, it has a number of useful 
mechanical consequences. Starting with the scaling assumption ),...,(),...,( 11 nn ccCccC λλλ = , 
we can differentiate with respect to the parameter λ  and then set 1=λ . The result is:  
 

∑ =
∂
∂

⇒=
i

i
i

nn Cc
c
CccCccC

d
d ),...,(),...,( 11 λλ
λ

, 
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A result which MFE call the Euler Decomposition or allocation of the aggregated capital 
back to its component risks.  
 

This result can be used to derive a first order formula approximation. Suppose ic~  is a 
point in a neighborhood of ic , then Taylor’s expansion gives: 

...]0[~

...])([~

...)~()()~(

++=

+
∂
∂

−+
∂
∂

=

+−
∂
∂

+=

∑
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 The homogeneity assumption means the term in square brackets drops out. Thus the 
homogeneous formula approximation ∑≈

i
iicDC is equivalent to a first order Taylor expansion.  

 
This result could be used to justify factor based capital formulas, like the first generation 

of capital models, introduced in the early 1990s. 
 

If we want a homogeneous formula approximation accurate to second order, a reasonable 
place to start is a formula of the form ∑≈

ji
jiij ccDC

,

. If this formula is to have second order 

contact, then the relation ∑≈
ji

jiij ccDC
,

2 must also hold to second order. From this we deduce 

that, if the formula works at all, then we must have
ji

ij cc
CD
∂∂

∂
=

22

2
1 . There are some additional 

requirements for this formula to be valid; for example, the function C must be positive (not a 

problem here), suitably smooth, and the matrix 
ji

ij cc
CD
∂∂

∂
=

22

2
1  should be positive semi-definite.  

 
In Appendix 1 we show that, if the risk measure being used is coherent in the sense of 

Artzner5 et al., then the tail correlation matrix is guaranteed to be positive semi-definite. 
Assuming this to be the case, one can then do some calculus to verify that the proposed formula 
approximation really does have second order contact at the point ic .  
 
 We conclude that, at least for coherent risk measures, we can always find simple formula 
approximations to an exact capital aggregation model.  
 

                                                           
5 Artzner, P., “Application of Coherent Risk Measures to Capital Requirements in Insurance,” North American 

Actuarial Journal (April 1999). 
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1.2 Elliptical Models 
 
Elliptical models are discussed here briefly because they are basically the answer to the 

question:  When is the standard aggregation formula ∑=
ji

jiij ccC
,

ρ actually correct?  As 

detailed in MFE,6 a random vector X is elliptical if it can be written as an affine function of a 
spherical vector S.  
 

More formally, X is elliptical if we can write SRAmX +=  where ][XEm =  is a 
constant vector, A is a constant matrix, S is a vector uniformly distributed on an (n-1) sphere, and 
R is a positive scalar independent of S.  
 

Two important examples of elliptical models are the multivariate normal distribution and 
the multivariate Student-t model. For the multivariate normal distribution, R is the square root of 
a 2

nχ  variate while the Student-t model results if 2/ nnR χ=  . 
 

An important property of elliptical models is that if the vector ∑=
i

iXX  is elliptical and 

ζ  is a well defined risk measure, such as value at risk (VaR) or conditional tail expectation 
(CTE), then we can always write:   
 

∑ −−+=
ji

jjiiij XEXXEXXEX
,

])[)(])([)((][)( ζζρζ  

where 
∑ ∑

∑
=

k l
jlik

k
jkik

ij
AA

AA

22 )()(
ρ . If the vector X has finite variance then the matrix ijρ is also the 

usual linear correlation matrix.  
 

In an economic capital context it is usual to assume that all variables have a mean of zero 
so that the risk measure aggregation formula becomes 
 

∑=
ji

jiij XXX
,

)()()( ζζρζ . 

 
This result follows from a property of spherical distributions proved in MFE.7  They 

show that for any constant vector a the linear combination SRa ⋅ is equal, in distribution, to 
1|| RSa . This means that there is a constant c , depending on the risk measure and R, such that for 

each i: 
 

∑+=
k

ikii AcmX 2)(ζ . 

                                                           
6 McNeil, Frey & Embrechts, as in footnote 2. 
7 McNeil, Frey & Embrechts, Theorem 3.19.  
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For the aggregate risk we then have:  
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as required.  
 

Elliptical models therefore have the property that the tail correlation matrix ijD is 
independent of both the specific choice of risk measure and mix of risks used to calculate it. This 
is a result of the assumed symmetry in the model, so one would not expect these properties to be 
very representative. 
 
1.3 A Non-Elliptical Closed Form Example 
 

Let 0>ξ  be a real number and consider the aggregation formula ξξ ][ /1∑=
i

icC . We will 

examine this formula, and some variations on it, in some detail because it represents a model 
which is not elliptical but is still simple enough that we can find a closed form expression for the 
capital aggregation process.  
 

This formula applies in at least two moderately realistic situations.  
 

1. If 2/1≥ξ , this is the technically correct formula for aggregating capital when the 
risks are independent, identical stable distributions with index of stability ξα /1= . 
The formula also holds if we use a mixture of such risks.  
 
A random variable Y has a stable distribution if a sum of n independent copies 

belongs to the same location/scale family, i.e., YnYY
d

n
α/1

1 ... =++ . The normal 
distribution is a member of the stable family corresponding to 2=α . See Nolan8 for 
more background on stable distributions. 

 
2. For any 0>ξ , extreme value theory9 can be used to show this is an approximate 

formula for aggregating capital when  
 

                                                           
8 Nolan, John P., “Stable Distributions: Models for Heavy-Tailed Data,” Birkhauser (2007). The first chapter of this 

book can be downloaded, for free, from John Nolan’s Web page. 
9 This is a standard result in extreme value theory. See, for example, Bocker, B., Kluppelberg C., “Operational VaR: 

A Closed Form Solution,” Risk Magazine (December 2005). 
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• the risks are independent compound variables with identical  severity distributions 
that have regularly varying tails with tail index ξ  and 

 
• the risk measure being used is sensitive only to the far tail of the loss distribution. 

VaR or  CTE with a high percentile choice would be appropriate examples. 
  

If a risk has tail index ξ , this means that there are constants BA,  so that a Pareto 
approximation: 
 

ξ−−+≈ )1()( uBAuVaR  
 
is valid in the limit as 1→u . This is the core insight of extreme value theory (see MFE Ch. 7).  
 

If 0<ξ , the risk is bounded above and is referred to as light-tailed.  
 

If 2/1<ξ , the variance is finite, and, as we show in Appendix 3, the tail index ξ can be 
defined by the limiting value:  

)(
)]()([21

2

1 uCTV
uVaRuCTELim

u

−
=−

→
ξ . 

 
An important example in this category is the Student-t distribution with n degrees of 

freedom. This risk has a tail index of n/1=ξ . 
 

If 2/1>ξ  then the risk is considered to be very heavy-tailed. Examples of very heavy-
tailed risks are the stable distributions for 2>α . In this situation, the relationship between index 
of stability and tail index is just ξα /1= . 
 

The case 2=α requires special treatment. As noted earlier, the stable distributions with 
2=α  are Gaussian, and they are not heavy-tailed. In fact, the tail index of a Gaussian random 

variable is just 0=ξ  as is the tail index of a lognormal random variable. The mathematical 
reason for this apparent discontinuity in behavior is beyond the scope of this paper; however, the 
discontinuity is important to the argument that follows. 
 

With this background, we can now ask how the new formula ξξ ][ /1∑=
i

icC  differs from 

the standard. To address this issue, we start with a two risk model such that 21 cc = . Table 1.1 
below shows the results of applying the ideas developed in the previous section  
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c 1 = c 2

ξ = 0.35 ξ = 0.50 ξ = 0.65

D 64% 71% 78%

D 1, D 2 64% 64% 71% 71% 78% 78%

D ij 116% -35% 100% 0% 95% 28%
-35% 116% 0% 100% 28% 95%

TABLE 1.1

 
 

The first row in the table shows the aggregate diversification benefit ∑=
i

icCD / , while 

subsequent rows show the diversification factors and tail correlation matrix defined earlier. In 
this example, the two risks enter the problem symmetrically so 21 DDD == . We see that the 
aggregate risk is an increasing function of the tail index parameterξ . This is not a surprise. 
 

When 2/1=ξ , the model reduces to the standard elliptical formula, and the tail 
correlation matrix is just the two dimensional identity matrix. However, when 2/1<ξ , the 
diagonal elements are greater than 1, and the off diagonal elements are negative even though the 
risks are independent. These relationships are reversed when 2/1>ξ .  
 

This example suggests that, in the presence of elliptical symmetry, risks aggregate as if 
they had a tail index of 2/1=ξ  regardless of their actual tail index. 
 

Before trying to draw too many conclusions, it is useful to look at a second example, 
where the risks are not of the same size. Table 1.2 assumes the first risk is twice the size of the 
second risk.  
 

 
 

TABLE 1.2 c 1 = 2 c 2

ξ =  0.35 ξ = 0.50 ξ =  0.65

D 70% 75% 81% 

D 1 , D 2 92% 25% 89% 45% 90% 62%

D ij 106% -20% 100% 0% 96% 26%
-20% 93% 0% 100% 26% 99%
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The first order diversification factors now reflect a fundamental risk principle, the 
marginal cost of adding exposure to a risk increases with the amount of exposure that you 
already have. This can be verified by doing some calculus to get:  

1/1 −

⎟
⎠
⎞

⎜
⎝
⎛=

∂
∂

=
ξ

C
c

c
CD i

i
i . 

 
One interesting observation about Example 1.2 is that the tail correlation element 22D  is 

now less than 1. To get a better understanding of what is going on, we examine the formula 
for ijD , which shows that the tail correlation entries are fairly simple functions of the first order 
diversification factors. By direct calculation we find:  
 

⎩
⎨
⎧

≠
=

=
−

−
−

= −
−

ji
ji

DDDD ijjiijjij 0
1

,211 1
21

δ
ξ

ξδ
ξ

ξ ξ
ξ

. 

 
From this result, we see the sign of the off diagonal terms is determined only by the tail 

shape parameter. If 2/1>ξ , then the tail correlation is always positive. When 2/1<ξ , then the 
reverse is true.  
 
 If we set ji =  in the formula above, we find for a diagonal element:  
 

.211 21
21

iiii DDD
ξ

ξ
ξ

ξ ξ
ξ

−
−

−
= −

−

 

 
The following chart plots the behavior of iiD , as a function of iD , for three values of the 

shape parameterξ .  
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 As the chart shows, the diagonal elements have the potential to take on a wide range of 
possible values. But extremely large deviations from 1 only occur when the first order 
diversification factor is small.  
 

It is possible to construct a closed form example that combines the issues in the model 
above with traditional correlation concepts. The example is fairly easy to understand in the 
context of stable distributions. Let mAYA ,...,1, = be m independent, identical, symmetric stable 
random variables with index of stability .2,/1 ≥= αξα  Now assume there is a positive random 
variable W, independent of the AY and a matrix iAB so that the n risks in our aggregation model 
are equal, in distribution, to ∑=

A
AiAi YBWX . By the properties of stability, we must have 

WYbX i

d

i =  where ∑=
A

iAi Bb ξξ ]||[ /1 . There will then be a constant 0>k , depending on the risk 

measure, such that ii kbc = . For the aggregate capital we then have: 
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While more complex than the earlier formula, this is still simple enough that we can 
compute diversification factors and tail correlations in closed form. Table 1.3 below revisits the 

21 cc =  example but with the matrix B above chosen so that the two risks have an ordinary 
correlation of 25% when 2/1=ξ . 
 

 
 
 

The result is, very roughly, to add 25% to the off diagonal terms while moving the self 
correlations closer to one.  
 

There is one sense in which the examples treated so far are not very representative. If we 
increase the number of risks involved from 2 to 4, then the individual diversification factors will 
drop because each risk is, relatively, less important. This has the effect of bringing the off 
diagonal terms closer to 0 and bringing the diagonal terms closer to one. Table 1.4 illustrates this 
point for 35.=ξ . 
 

 
 

The examples of this section are still too special to allow any firm conclusions to be 
drawn, but they do suggest some ideas that can be tested with the tools to be introduced in the 
next section.  
 

TABLE 1.3 c 1 = c 2

ξ =  0.35 ξ = 0.50 ξ =  0.65

D 73% 79% 85% 

D 1 , D 2 73% 73% 79% 79% 85% 85%

D ij 109% -3% 100% 25% 97% 49%
-3% 109% 25% 100% 49% 97%

TABLE 1.4
ξ = 0.35 c 1 = c 2 = c 3 = c 4

D 41%

 D i 41% 41% 41% 41%

D ij 108% -14% -14% -14%
-14% 108% -14% -14%
-14% -14% 108% -14%
-14% -14% -14% 108%
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A reasonable hypothesis is: 
 

The standard aggregation formula may be conservative when aggregating risks whose 
tail indices are less than ½.  

 
A counterargument to this hypothesis is that all of the examples in Section 1.3 have a 

very simple copula structure. A copula assumption that builds in more tail dependence10 might 
well overcome the effect identified above, assuming the effect is real to begin with.  
 

In order to address this issue, we need to build a more sophisticated tool that can deal 
numerically with very general models. 
 
1.4 Some Numerical Examples: Aggregating Pareto Risks with the Gaussian and t-Copulas 

 
In order to test the idea raised at the end of Section 1.3, we need to work with models for 

which there are no simple closed form expressions for capital aggregation. We start with the 
problem of aggregating four independent, identical Pareto risks with tail index 330.=ξ . The 
standard correlation approach to this problem would produce an aggregate diversification benefit 
of %50=D .  
 

A simulation model was developed to generate 100,000 samples of four independent 
Pareto variates. Using a risk measure of CTE(.99) and the direct method, as described in 
Appendix 1, we estimated the diversification measures described in Section 1.3. The numerical 
experiment was then repeated 10 times and the results averaged to reduce sampling error. The 
results are in Table 1.5 below: 
 

 
 

The results are similar, but not identical, to Table 1.4 in the previous section. The left-
hand side of the table reports the mean of the 10 experiments, while the standard error is reported 
on the right-hand side. Since all of the risks are entering the problem in a symmetric way, we 
would expect all of the off diagonal elements in the tail correlation matrix to be equal. They are 
equal to within the estimated sampling error. The same comment applies to the diagonal 
elements. 
 
                                                           
10 See MFE Chapter 5 for a discussion of copulas and tail dependence. 

TABLE 1.5 ξ = 0.33  

D 44.5% +- 0.1%

D i 44% 44% 45% 45% +- 1% 1% 1% 1% 

D ij 100% -6% -7% -8% 1% 1% 1% 1% 
-6% 96% -5% -6% +- 1% 2% 1% 1% 
-7% -5% 100% -7% 1% 1% 2% 1% 
-8% -6% -7% 101% 1% 1% 1% 3% 
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We now briefly indicate what has to be done in order to compute the results shown in 
Table 1.5. When the risk measure being using is CTE(u), it can be shown that the first 
derivatives11 of the capital aggregation function ),...,( 1 nccCC = are given by:  
 

i

Xi

i
i c

uVaRXXE
c
CD

)](|[ ≥
=

∂
∂

=  

while the second derivatives must be estimated from the formula:12 
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Here ))(( uVaRf XX  is the probability density of the aggregate risk ∑=

i
iXX when it is 

equal to its VaR(u) level. 
 

The tail correlation matrix is then estimated from the formula: 
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There are a number of technical challenges that must be overcome before these results 

can be put into practice. See Appendices 1 and 4 for more details.  
 

When working with risk measures, such as CTE, many of the obvious statistical 
estimators are known to exhibit small sample bias.13  We believe the sample size of 100,000 is 
large enough, in this case, to avoid that issue.  
 

We now ask what happens if we remove the assumption that the four risks are 
independent. We continue to assume the four risks are identical, but we will now assume the 
dependency structure can be modeled by a Student-t copula with 10 degrees of freedom.14  In 
addition to the degrees of freedom parameter, the t-copula requires us to specify the rank 
correlation matrix of the risks. We continue to assume the rank correlation is simply the identity 
matrix. The results are in Table 1.6, which reports the diversification metrics and the standard 
linear correlation. 
 

                                                           
11 For a rigorous derivation of this result, see Tasche, D., “Risk Contributions and Performance Measurement” 

Preprint (2000). 
12 This appears to be an original result. See Appendix 1 for a high level proof and generalizations to other risk 

measures such as VaR. 
13 See, for example, Manistre, B.J. & Hancock, G.H., “Variance of the CTE Estimator,” North American Actuarial 

Journal (May 2005).  
14 See MFE Chapter 5 for a background discussion of copulas. 
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The use of the t-copula has clearly made the results more conservative. We see that the 
diversification benefit that arose from assuming the tail index was less than one-half has been 
almost completely offset by the additional tail dependence assumed in the copula. The additional 
tail dependence has also made the tail correlation metric harder to estimate. Table 1.6 uses the 
same number of samples as Table 1.5, i.e., 10 runs of 100,000 samples. 
 

We close this section with one final example. The tail index assumption of 330.=ξ is 
still fairly heavy for most of the risks in a large company’s portfolio. We can make the example a 
bit more realistic by assuming that half of the risks in the model are lighter, with a tail index of 

088.=ξ . 
 

 
 

TABLE 1.6 ξ = 0.330 ν= 10

D 49.2% +- 0.1%

D i 49% 48% 50% 49% +- 1% 1% 1% 1% 

105% -5% 0% -3% 3% 1% 1% 2% 
D ij -5% 100% 0% -1% +- 1% 2% 1% 2% 

0% 0% 96% 2% 1% 1% 3% 1% 
-3% -1% 2% 99% 2% 2% 1% 3% 

100% 4% 3% 4% 0% 0% 0% 1% 
ρ ij 4% 100% 4% 4% +- 0% 0% 0% 0% 

3% 4% 100% 4% 0% 0% 0% 0% 
4% 4% 4% 100% 1% 0% 0% 0% 

TABLE 1.7 ξ 1 =ξ 2 = 0.330 ν= 10
ξ 3 =ξ 4 = 0.088

D 46.8% +- 0.1%

D i 48% 48% 45% 46% +- 0.00  0.00  0.00  0.00    

99% 4% -5% -6% 1% 1% 1% 1% 
D ij 4% 98% -5% -7% +- 1% 1% 1% 1% 

-5% -5% 111% -15% 1% 1% 2% 1% 
-6% -7% -15% 114% 1% 1% 1% 2% 

100% 4% 3% 3% 0% 0% 0% 0% 
ρ ij 4% 100% 3% 3% +- 0% 0% 0% 0% 

3% 3% 100% 2% 0% 0% 0% 0% 
3% 3% 2% 100% 0% 0% 0% 0% 



19 

 Not surprisingly, the diversification benefit has increased by assuming some of the risks 
have lighter tails. 
 
2. An Aggregation Modeling Scenario 

 
With the concepts and tools from Section 1 in hand, we now walk through a small, but 

moderately realistic, modeling scenario. We assume a model company that has determined its 
stand-alone capital requirements for four risk types. These are: 
 

1. Investment Risk (IR): The company has determined that it needs four units of 
capital at the CTE(.99) level for credit risk. 

 
2. Mismatch Risk (MR):  A combination of sensitivity tests and duration 

calculations has led to the conclusion that 2.5 units of capital are required at the 
CTE(.99) level. 

 
3. Underwriting Risk (UW):  Only 2.0 units of capital are required, at the CTE(.99) 

level,  based on sensitivity testing. 
 
4. Operational Risk (OR): A high level model suggests 1.5 units of capital are 

required at the CTE(.99) level. 
 
 The sum of the stand-alone capital requirements is 10. For the purposes of this section, 
we will assume these numbers are known with a fair degree of precision. 
 

As a first step in the aggregation process, the company selects a small group of seasoned 
risk professionals and assigns them the task of coming up with a reasonable correlation matrix. 
After researching the available data and the risk literature, the group came up with the 
recommendation below. 

IR MR UW OR
IR 100% 40% 20% 20%

MR 40% 100% 0% 20%
UW 20% 0% 100% 0%
OR 20% 20% 0% 100%  

 
The group’s recommendation also came with some hefty caveats. The group believes the 

precision of its estimated correlation coefficients is no better than +-10%.  
 

Undaunted by this caveat, the company goes ahead and computes the diversification 
factors and aggregate capital based on this correlation matrix. The result is Table 2.1. 
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These results are of interest in themselves. They tell us that credit risk is the most 
expensive risk, on the margin, because there is more of it and it is positively correlated to all of 
the other risks. Underwriting risk and operational risk have similar diversification factors even 
though they are not identical in size. Operational risk is more expensive because it is more highly 
correlated to other risks than is underwriting risk. All of these conclusions assume the starting 
correlation matrix is materially correct.  
 

The second step in the company’s modeling process was to build an elliptical simulation 
model that approximates the results of Step 1. The company started by assuming the component 
risks had a multivariate Student-t distribution with 100 degrees of freedom and a rank correlation 
matrix equal to the risk group’s recommendation. The scale of each component risk was 
calibrated to reproduce the stated CTE(.99) values. The results are in Table 2.2. 
 

 
 

TABLE 2.1  Step 1

c i 4 2.5 2 1.5

D 66.0%

D i 86% 67% 42% 42%

D ij 100% 40% 20% 20%
40% 100% 0% 20%
20% 0% 100% 0%
20% 20% 0% 100%

TABLE 2.2 Step 2 
Multivariate Student t ν = 100

c i 4 2.5 2 1.5

D 66.8% +- 0.1%

D i 87% 67% 43% 44% +- 1% 1% 0% 1% 

101% 41% 21% 22% 1% 1% 1% 1% 
D ij 41% 99% 0% 21% +- 1% 1% 1% 1% 

21% 0% 102% 0% 1% 1% 1% 1% 
22% 21% 0% 102% 1% 1% 1% 1% 

100% 42% 21% 21% 0% 0% 0% 0% 
ρ ij 42% 100% 0% 21% +- 0% 0% 0% 0% 

21% 0% 100% 0% 0% 0% 0% 0% 
21% 21% 0% 100% 0% 0% 0% 0% 
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We are now using a simulation model. In this case, a run of 25,000 samples was repeated 
10 times to build Table 2.2. Since the model is elliptical, we expect tail correlation and linear 
correlation to be the same. They are to within sampling error.  

 
The small difference between Tables 2.1 and 2.2 is due to the fact that Table 2.2 assumes 

the rank correlation is given by the risk group’s recommendation. This has had a very small 
impact on the correlation matrix, but the aggregate diversification factor has gone up by almost  
one percentage point. 
 

In Step 3 of the process, it is argued that the marginal distributions, Student-t with 100 
degrees of freedom, do not have heavy enough tails. Our group of seasoned risk professionals is 
now asked to recommend a better assumption for each component risk. The group is aware of the 
research, reported in Appendix 3 of this paper, that the crucial quantity that they need to get right 
is the tail shape of each risk at or near the .995 probability level. They assign each risk to one of 
the four tail risk categories in the table below.  
 

After much debate, they conclude that IR and MR are medium-tailed; UR is light-tailed; 
and OR is heavy-tailed.  
 

 
 

A new simulation model is now built that uses the new, risk specific, degree of freedom 
parameters. The copula is still based on 100 degrees of freedom, but we have had to increase the 
sample size from 25,000 to 100,000 because we are using risks with a heavier tail index.  
 

Table 2.3 has the results of running a sample size of 100,000 and then repeating the 
process 10 times. 
 

Class   Student – t deg. of 
freedom

Tail Shape at 99.5%   
(Pareto)

Log Normal
S igma

   
Light Tailed   25 (0.03) .19

Medium Tailed   10 0.06 . 47
Heavy Tailed   3 0.330 1.52

Very Heavy Tailed   1.5 0.67 N/A
  



22 

 
 

This result may be surprising because the aggregate result has gone down even though all 
of the marginal risk assumptions have become more heavy-tailed. Part of the explanation lies in 
the fact that, by choosing tail behaviors different from the copula, we no longer have elliptical 
symmetry in the model. The model in Step 3 above is more like the examples in Section 1.2 with 

2/1<ξ than the elliptical models in Section 1.1, which behave like models with 2/1=ξ .  
 

A skeptic now demands proof that the results of Step 3 are not very sensitive to all the 
details of the marginal distribution assumption. Our group of seasoned risk professionals now 
concludes that the Student-t assumption is reasonable for the MR and UW risks but recommends 
the use of  a lognormal assumption for IR and the Pareto distribution for OR.  
 

We briefly detail what this means. When using a Student-t model, we simulate individual 
risks using a formula for the form )()( 1 uBTuVaR n

−= , where the scale constant B  is chosen to 
calibrate the model to the desired level of stand-alone capital ic .  
 

If a Pareto model is assumed, the simulation formula becomes ξ−−+= )1()( uBAuVaR . 
The three parameters ξ,, BA are now chosen to satisfy three constraints. 
 

• The mean of the distribution is zero. 
• The model calibrates to the desired stand-alone capital CTE(.99). 
• The model has the same tail shape at the .995 level as the Student-t distribution it 

is replacing. In practice this means using the Pareto parameter in the preceding 
table. 

 
For a lognormal model we go through the same parameter fitting process with the 

simulation formula )](exp[)( 1 uBAuVaR −Φ+= σ . 

TABLE 2.3   Step 3
c i 4 2.5 2 1.5

ν i 10 10 25 3 Copula ν = 100
Stu-t Stu-t Stu-t Stu-t

D 63.4% +- 0.1%

D i 88% 63% 40% 31% +- 0.4% 0.3% 0.4% 0.4% 

104% 35% 19% 9% 1% 0% 1% 1% 
D ij 35% 98% -1% 12% +- 0% 1% 0% 0% 

19% -1% 92% -4% 1% 0% 1% 1% 
9% 12% -4% 91% 1% 0% 1% 3% 

100% 37% 21% 19% 0% 4% 0% 0% 
ρ ij 37% 100% 0% 17% +- 4% 0% 0% 2% 

21% 0% 100% 0% 0% 0% 0% 0% 
19% 17% 0% 100% 0% 2% 0% 0% 
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TABLE 2.5   Step 5
c i 4 2.5 2 1.5

ν i 0.463 10 25 0.330 Copula ν = 10
Lg Nrml Stu-t Stu-t Pareto

D 64.7% +- 0.1%

D i 87% 65% 44% 34% +- 0.4% 0.2% 0.4% 0.9% 

102% 37% 20% 12% 1% 0% 0% 1% 
D ij 37% 94% 5% 15% +- 0% 0% 0% 0% 

20% 5% 96% 0% 0% 0% 1% 1% 
12% 15% 0% 89% 1% 0% 1% 2% 

100% 39% 20% 17% 0% 0% 0% 0% 
ρ ij 39% 100% 0% 15% +- 0% 0% 0% 0% 

20% 0% 100% 0% 0% 0% 0% 0% 
17% 15% 0% 100% 0% 0% 0% 0% 

The results are in Table 2.4. 
 

 
The change in marginal distribution assumption has had a measurable but relatively small 

impact on the results. This is consistent with the theory in Appendix 3.  
 

We now ask what happens if we make the dependency structure more conservative by 
using a Student-t copula with 10 degrees of freedom.  
 

Not surprisingly, the results are more conservative. What is surprising, to the author, is 
that the aggregate result is still less than the starting point in Step 1. While research on the 
appropriate choice of copula is still in its early days (see Appendix 4), a number of published 
reports suggest that a t-copula with 10 degrees of freedom is a reasonable model of some real 
world dependency structures.  
 

To close this section, we consider what happens when the copula degree of freedom 
parameter goes all the way down to three. This adds more tail dependency, so the result gets 
more conservative.  
 

TABLE 2.4   Step 4
c i 4 2.5 2 1.5

ν i 10 10 25 3 Copula ν = 100
Lg Nrml Stu-t Stu-t Pareto

D 61.6% +- 0.1%

D i 87% 61% 38% 27% +- 0.5% 0.3% 0.4% 0.5% 

105% 31% 17% 4% 1% 0% 0% 1% 
D ij 31% 91% 2% 9% +- 0% 0% 0% 0% 

17% 2% 83% -3% 0% 0% 1% 0% 
4% 9% -3% 89% 1% 0% 0% 2% 

100% 39% 20% 15% 0% 0% 0% 0% 
ρ ij 39% 100% 0% 15% +- 0% 0% 0% 0% 

20% 0% 100% 0% 0% 0% 0% 0% 
15% 15% 0% 100% 0% 0% 0% 0% 
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We now have a result that is more conservative than the starting point. Many 
practitioners would consider a t-copula with three degrees of freedom to be a fairly conservative 
dependency structure. This result suggests, to the author, that the diversification benefit that 
arises when aggregating risks with tail shape 2/1<ξ  can be a material issue. 
 

What is interesting about this example is that we can now ask what would happen if the 
marginal distributions were all made more heavy-tailed by changing them to Student-t 
distributions with three degrees of freedom. The answer is that the result would go back down to 
the starting point ( %8.66=D ) because the model would become elliptical again. This somewhat 
counterintuitive result is an example of how elliptical symmetry can confound the otherwise 
simple intuition that heavier tails aggregate in a more conservative fashion. 
  

Having gone through this modeling scenario, the company must now decide what to do. 
A debate now develops because no one really knows what the right copula is. One party argues 
that the result in Step 5 is appropriate because it is consistent with some known studies. Another 
party argues that, since we know so little about the true copula, the company should use the more 
conservative result in Step 6. The debate is finally brought to closure when someone remembers 
how uncertain the initial rank correlation matrix was. A simple alternative is proposed where a 
flat 10% is added to all of the starting rank correlations. The result is in Table 2.7. 
 

TABLE 2.6   Step 6
c i 4 2.5 2 1.5

ν i 0.463 10 25 0.330 Copula ν = 3
Lg Nrml Stu-t Stu-t Pareto

D 70.5% +- 0.3%

D i 87% 73% 55% 43% +- 0.5% 0.5% 0.5% 0.6% 

100% 49% 26% 27% 1% 1% 1% 1% 
D ij 49% 106% 9% 25% +- 1% 1% 1% 1% 

26% 9% 128% 3% 1% 1% 1% 1% 
27% 25% 3% 84% 1% 1% 1% 2% 

100% 39% 20% 22% 0% 0% 0% 0% 
ρ ij 39% 100% 0% 15% +- 0% 0% 0% 0% 

20% 0% 100% 0% 0% 0% 0% 0% 
22% 15% 0% 100% 0% 0% 0% 0% 
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This simplified approach has produced a result very similar to Step 6 and is also much 
easier to explain to a non-technical audience. The working group concluded by recommending 
the simple model in Table 2.7. They reached a practical conclusion but felt comfortable that they 
had worked through the significant issues and could defend their position if challenged by other 
knowledgeable risk professionals. They were also aware that the entire issue has to be revisited 
as additional theoretical or practical insights become available.  
 
3. Conclusions 
 

 The author believes there are two sets of conclusions that can be drawn from the analysis 
reported here.  
 

1. It is possible to use fairly simple models for aggregating capital even though the 
real aggregation issues can be very complex. There are two reasons. 

 
• The theoretical errors made in assuming an elliptical model will tend to 

offset in many circumstances. Given this fact and the lack of precision in 
most model parameters, it is not clear that the apparent precision of a more 
complex model is real.  

 
• Even if a more complex model is justified, it can always be approximated 

locally by a tail correlation type formula. The tail correlation matrix, as 
defined in this paper, can be a useful tool for communicating results no 
matter what the model. 

 
2. When building complex models, a large number of assumptions must be made 

about issues such as copulas and marginal distributions. We have seen that, at 
least for the marginal distributions, we don’t need to know every detail about the 
distribution in order to get meaningful results as explained in Appendix 3. In 
terms of the copula assumption, it is not yet clear to the author which copula 
properties are crucial to the outcome and which are not. See Appendix 2 for more 
detail. 

 

TABLE 2.7 
c i 4 2.5 2 1.5

D 71.2%

D i 88% 72% 51% 51%

100% 50% 30% 30%
D ij 50% 100% 10% 30%

30% 10% 100% 10%
30% 30% 10% 100%
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Appendix 1. The Calculus of Risk Measures   
 
In Section 1.4 a number of results were stated relating to the derivatives of some capital 

aggregation functions. The purpose of this appendix is to provide more detail on those results. 
The process we go through is to establish the results when a smooth distortion function is used as 
a risk measure and then consider what happens when we specialize to  CTE or VaR. 
 

A distortion function is a non decreasing function ]1,0[]1,0[: →g  such that 0)0( =g  and 
1)1( =g . Given any such function and a random variable X we can calculate the risk measure:  

∫= )]([][ xFxdgXRg , 

where )Pr()( xXxF ≤=  is the distribution function of X. The mapping gR  is often called a 
distortion measure because the calculation is equivalent to calculating the mean of X with respect 
to a distorted probability function )]([)(* xFgxF = . Some well known examples of distortion 
measures are listed in the table below.  
 

Name Formula 
Value at Risk (VaR) 

 
Conditional Tail Expectation (CTE) 

⎩
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⎧

≥−−
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Wang Transform  
Block Maxima mttg =)(  

 
 If the distortion function is continuous and convex,15 then the resulting risk measure is 
coherent in the sense of Artzner et al. In the table above, all of the risk measures are coherent 
except value at risk.  
 

Now assume we have n risks nXX ,...,1 and n real numbers nee ,...,1  and let ∑=
i

ii XeX ; 

then we can define a function: 
)()(),...,( 1 XRXeReeF g

i
iign == ∑ . 

 
Given this notation, the main results of this appendix are 
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15 See, for example, Hurlimann, W., “Distortion Risk Measures and Economic Capital,” North American Actuarial 

Journal (2004).  
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When the distortion function g is smooth and the random variables nXX ,...,1 have a 

smooth probability density function, the proof of the above result is an exercise in multi-variable 
calculus. We omit the details.  
 

If the distributions or risk measures involved are not smooth, some additional care is 
required when deriving the above results. While we don’t consider non-smooth probability 
distributions in this paper, both VaR and CTE are based on distortion functions that are not 
infinitely differentiable. However, it is not hard to check that if we have a sequence of smooth 
distortion functions )(tgn that converges, pointwise, to a limiting distortion function )(tg , then 
the formulas above continue to hold provided we interpret the integration operations in the sense 
of generalized functions.  
 

For example, if the risk measure is CTE(u) we find:  
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For second derivatives the quantity )]([' xFdg  must be interpreted as a generalized 

function so: 
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To get the results used earlier in the paper we must consider the relationship between the 

stand-alone capital ncc ,...,1 and the exposure variables nee ,...,1 . This relationship is clearly  
).()()( igiiigii XReXeRec ==  The derivatives of the function F with respect to one of the capital 

variables is then:  
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The same argument shows that: 
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The issues associated with putting these results into practice are discussed in Appendix 4. 

The main challenge is estimating the conditional covariance )](|),([ uVaRXXXCov Xji = . 
 

If one chooses to work with VaR as a risk measure, then we can invert the relation 
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One implication of these results is that the technical issues encountered when working 

with VaR are more challenging than when working with CTE. From a purely technical 
perspective, CTE is probably the easiest risk measure with which to work. 
 

A second implication is that we cannot guarantee that the tail correlation matrix for VaR 
will be positive semi-definite.  
 

We can state that the tail correlation for CTE is positive semi-definite because the tail 
correlation is the sum of two components, both of which are semi-definite.  
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In the general situation we can write the tail correlation matrix as: 
 

.)]([']|),([∫ =+
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jiji
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 The second term above is a linear combination of positive semi-definite matrices with 
coefficients given by )()]([)]([' xdFxFgxFdg ′′= . So if the distortion function is convex, i.e., 

0)]([ ≥′′ xFg , we can guarantee that the tail correlation matrix will be positive semi-definite. 
This is the basis for the claim made in Section 1 that coherent risk measures have positive semi-
definite tail correlation matrices.  
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Appendix 2. Choosing the Copula and Related Parameters 
 
Despite a large academic literature on the subject of copulas,16 the author does not 

believe there is a comprehensive professional consensus as to which copulas should or should 
not be used for risk aggregation modeling. Early workers in the credit risk field started by using 
Gaussian copulas due to their mathematical simplicity. These models were then criticized, 
appropriately, for their lack of tail dependence.  
 

The Student-t copula is used in this paper because it is easy to work with, it exhibits tail 
dependence, and the parameters are fairly easy to understand. These reasons do not mean it is the 
most appropriate copula for the risk aggregation application. 
 

Many other copula families have been described in the literature but it is not clear, to the 
author, why any of them is necessarily doing a better job than the Student-t copula. Ideally, one 
would like a result that allows practitioners to understand which copula properties are crucial to 
the aggregation issue and which properties can be safely ignored. Until that insight is available, 
the author believes it makes sense to stick with something simple. 
 

Two studies which suggest that a Student-t copula with 10 degrees of freedom is a 
reasonable model for the correlation of returns between some asset classes are Mashal, Naldi and 
Zeevi17 and Kiole, Koedijk and Verbeek.18  The last study compares the relative ability of the 
Gaussian, Student-t and Gumbel copulas to explain the dependency structure of equity, fixed 
income and real estate returns and concludes that the Student-t copula does a better job. 

                                                           
16 See MFE Chapters 5 and 7 for a very good overview. 
17 Mashal, R., Naldi, M., and Zeevi, A., “On the Dependence of Equity and Asset Returns,” Risk Magazine (October 

2003). 
18 Kole,E., Koedijk, K., and Verbeek, M., “Selecting Copulas for Risk Management,” Preprint (September 2006). 
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Appendix 3. Choosing the Marginal Distribution and Related Parameters 
 
This appendix documents some ideas that are needed to understand the paper’s claim that 

we don’t need to know every detail about the marginal distributions used in our simulation 
models. The appendix starts by developing some technical results related to extreme value theory 
and ends by surveying the tail behavior of some standard risk models. 
 
Some Technical Results 
 

Let X be a real valued random variable and set )Pr()( xXxF ≤=  and define 
})(|inf{)()( 1 uxFxuFuVaR ≥== − . The two functions CTE(u) and CTV(u) are defined for 

10 ≤≤ u  by: 

∫ −

−
=

1 1 )(
1

1)(
u

dvvF
u

uCTE ,  .)()]([
1

1)( 21 21 uCTEdvvF
u

uCTV
u

−
−

= ∫ −  

 
If the random variable is continuous, then CTE(u) is just the conditional tail expectation 

or Tail VaR of X ,  )](|[)( uVaRXXEuCTE ≥= . Similarly, CTV(u) is the conditional tail 
variance when it exists.  
 

For any risk with finite variance, we can define a tail shape function )(uξ  by the 
equation: 
 

)(
)]()([)(21

2

uCTV
uVaRuCTEu −

=− ξ . 

 
There are many reasons why this is a useful concept. The two most important are: 

 
• The tail shape is independent of any location/scale parameters. Both the 

numerator and denominator are independent of location, so, by taking the ratio, 
we get something independent of both location and scale, i.e., a shape measure.  

 
• For most, though not all, distributions of interest to risk managers, the tail shape 

function is defined and reasonably well behaved for all 10 ≤≤ u . Note that 
2/1≤<∞− ξ  for all u. 
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 The graph below shows the behavior of the tail shape function for three well known 
probability distributions. 
 

TAIL SHAPE FUNCTION FOR 3 MARGINAL MODELS 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

The Pareto distribution is defined by the formula ξ̂1 )1()( −− −+= uBAuF  where 
0ˆ,, ≠ξBA  are all constants such that 0ˆ >ξB . It is easy to verify that if 2/1ˆ <ξ  then the tail 

shape is well defined and ξξ ˆ)( =u for all u, which explains the choice of notation. If  
2/1ˆ ≥ξ then CTV does not exist and if 1ˆ ≥ξ  CTE does not exist. 

 
The Student-t example here has n = 3 degrees of freedom. The tail shape function starts 

out at ∞− and then grows monotonically until it reaches the limiting value 1/n.  
 
The lognormal model is defined by  )](exp[)( 11 uBAuF −− Φ+= σ . The parameter σ  was chosen 
so that the tail shape of the lognormal model matches that of the Student-t model when 995.=u . 
Tail shape is positive for all 1<u  with limiting value of 0 as 1→u . 
 

Risks are usually referred to as heavy-tailed if 0)( >uξ  in a neighborhood of 1=u  and 
light-tailed if  0)( ≤uξ  in a neighborhood of 1=u . By that standard all of these examples are 
heavy-tailed. 
 

Examples of light-tailed risks are the exponential distribution )1ln()(1 uBAuF −+=−  
for which ]1,0[0)( ∈∀= uuξ  and the normal distribution which is the ∞→n  limit of the 
Student-t. 
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We now prove a result that basically says most continuous distributions are locally Pareto 
in the sense that if ]1,0[* ∈u and u is in a sufficiently small neighborhood around *u , then there 

are constants )(),( ** uBuA such that )(**1 *

)1)(()()( uuuBuAuF ξ−− −+≈ . Letting  1* →u , this is 
the core result of Extreme Value Theory although it is not usually presented in this way. The 
derivation given here is much simpler than the one used in most textbooks because they usually 
do not assume the CTV exists. 
 

Start by doing a little bit of calculus. If we differentiate the expressions for CTE(u) and 
CTV(u) we find: 
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Note that the last expression tells us that a risk is heavy/light-tailed according to whether 

CTV(u) is increasing or decreasing in the tail.  
 

Integrating the last expression from *u to u we find: 
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and if we confine our attention to u in a small enough neighborhood of *u we can assume 

)()( *uu ξξ ≈ in the integral and conclude: 
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Now go back to the derivative of CTE(u) and use the definition of tail shape and the 

result above to write: 
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Integrating this expression from *u to u we find: 
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Again assuming 0)()( * ≠≈ uu ξξ we find: 
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If 0)()( * =≈ uu ξξ  we get the modified result: 
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Finally, we can get an expression for the VaR by using: 
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When 0* =u  we have μ=)0(CTE  and σ=)0(CTV , and we get the very general 

expression: 
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which shows that, if we know the mean, standard deviation and tail shape )(uξ  for all values of 
u, we can recover the entire distribution.19 
 

Returning to the situation where the tail shape is locally constant, we find: 
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which clearly has the form )(**1 *

)1)(()()( uuuBuAuF ξ−− −+≈  as originally claimed. 
 

A short summary of the preceding discussion is that we can always approximate a VaR 
function locally by a Pareto distribution. However, on the same assumptions, that means we can 
also use other models as an approximation. It merely remains to be seen which “proxy” is the 
most useful. In particular we can draw the following conclusion: 
 

Two distributions which are calibrated to have the same location/scale parameters and 
have the same tail shape at the point *uu = will have similar values for )(uVaR  for u in a 
neighborhood of *u . 

 
The chart below gives visual evidence of the above result. The chart plots the VaR 

function above u = .90 for a lognormal, Pareto and Student-t risk. The parameters of each model 
have been set so that 
 

• The mean of the distribution is zero (location) 
• The CTE(.99) values are equal (scale) 
• The remaining parameter was calibrated to match the tail shape, )995(.ξ , of a 

Student-t model with three degrees of freedom. 
 

                                                           
19 This does not mean that we can specify )(uξ arbitrarily. The fact that 0/)(1 ≥− duudF  implies that 

)1))((21(
)(1)(

uu
uu

−−
−

=
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ξη  is an increasing function of u. 
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VaR for 3 Distributions
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When 995.<u , there is a clear ordering among the VaR functions with the Student-t 

being the highest and the lognormal value being the lowest. Those relationships all reverse once 
u exceeds a point slightly higher than .995.  
 

Sensitivity testing shows that, when aggregating capital using CTE(.99), it is conservative 
to use the Student-t model above relative to the other two choices.20   This suggests that it is the 
region below .995 that is driving the result. A high level theoretical argument that helps to 
explain this result is to consider the following set of inequalities for a first order diversification 
factor iD . We have: 
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The point is that it is the values of iX below its .995 VaR level that are having the most 

impact on the diversification factor.  
 

                                                           
20  See Step 4 in the modeling scenario in Section 2. 
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Tail Shape for Some Standard Risks 
 
Having argued that )995(.ξ  is an important parameter to get right, it is appropriate to ask 

how to set this parameter. Below are some short notes on the four broad risk categories used in 
the examples. 
 

Operational Risk. In 2003 and 2004, the Federal Reserve Bank of Boston published 
studies21,22 of operational risk losses. The 2003 study looked at the data available in public 
databases and concluded that operational risk is either heavy-tailed or very heavy-tailed. The 
2004 study used data from six large U.S. banks that is not in the public domain. The same 
conclusion was reached. The value 033.)995(. =ξ used in this paper’s examples is probably at 
the low end of the range of reasonable tail shape values. 
 

Credit Risk. To get some insight into credit risk issues, one can look at Oldrich Vasicek’s 
model for credit risk contagion.23  This model is intended to estimate the default rate for a 
portfolio of bonds assuming Merton’s structural model where a bond defaults if the market value 
of the issuer drops below the debt amount. There are three key assumptions: 
 

1. The portfolio is large enough and diverse enough that the law of large numbers 
can be applied. 

2. The stand-alone probability of default for any one bond is q . 
3. The stock of each issuer follows a lognormal process, and the correlation between 

all pairs of returns is ρ . 
 

For 10 ≤≤ u  let  )(uQ  be the portfolio probability of default at the level u, i.e., the 
probability of the portfolio loss being less than a fraction )(uQ  of the total is just u. In a 2002 
Risk Magazine paper, Vasicek showed that the simplifying assumptions above imply: 
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ρ quuQ . 

 
While this may not be the most intuitive-looking formula, it is simple enough to work 

with, and it does capture some key risk issues. For example, if the expected default level is 
02.=q  and 10.=ρ , the .995 loss level is 0957.)995(. =Q of the portfolio. 

 
The chart below shows the general behavior of the tail shape function for the Vasicek 

model. For many choices of parameters, the tail shape starts out negative, rises to a positive 
maximum and then declines to zero. For comparison, the chart also shows the tail shape for the 
normal distribution which also has a limiting value of zero. 

                                                           
21 De Fontnouvelle, P., DeJesus-Rueff, V., and Jordan, J., “Capital and Risk: New Evidence on Implications of 

Large Operational Losses.”  2003. 
22, De Fontnouvelle, P., Rosengren, E., and Jordan, J., “Implications of Alternative Operational Risk Modeling 

Techniques.”  2004. 
23 Vasicek, O., “Loan Portfolio Value.” Risk Magazine (2002), reprinted July 2007.  
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Tail Shape Functions
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The tables below show the tail shape for this model at both the 99.0% and 99.5% level 

for a range of input parameters. 
 

Tail Shape @ 99.0% for Vasicek's Credit Loss Model
q

0.04        0.1% 0.5% 1.0% 2.0%
0.5% (0.02)       (0.03)       (0.04)       (0.04)       
1.0% 0.01        (0.01)       (0.02)       (0.03)       

rho 2.0% 0.04        0.01        0.00        (0.01)       
5.0% 0.09        0.05        0.04        0.02        

10.0% 0.14        0.09        0.07        0.04        
20.0% 0.20        0.12        0.09        0.04        

Tail Shape @ 99.5% for Vasicek's Credit Loss Model
q

0.03        0.1% 0.5% 1.0% 2.0%
0.5% (0.01)       (0.03)       (0.03)       (0.04)       
1.0% 0.01        (0.01)       (0.02)       (0.02)       

rho 2.0% 0.04        0.01        0.00        (0.01)       
5.0% 0.08        0.05        0.03        0.02        

10.0% 0.13        0.08        0.06        0.03        
20.0% 0.18        0.10        0.07        0.03         

 
 

The first thing to notice is that the tail gets heavier as the risks become more correlated. 
This is clearly reasonable. More interestingly, we also see that the tail shape gets smaller as the 
probability of default increases. This is similar to the behavior of risks for options, which get 
lighter as the option moves into the money. 
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Based on this evidence one could consider credit risk to be a light- to medium-tailed risk 
depending on the credit quality of the portfolio.  
 

Mismatch Risk. If we start with the presumption that mismatch risk is fundamentally 
being driven by a lognormal model, then a reasonable place to start is the table below. It shows 
that it takes a huge volatility parameter to create even a medium-tailed risk.  
 

 
 

In this table, the leftmost column has the value of the parameter 2σ  that makes the tail 
shape at 995.=u  agree with a Student-t model. The top row corresponds to n=3. The lognormal 
model is clearly capable of exhibiting heavy-tailed behavior even though the limiting value of 
the tail shape function is always 0.  
 

This is clearly not a definitive argument, but it does suggest that, in the absence of special 
issues, mismatch risk should not be a source of risk with tail shape > ½.  
 

Underwriting Risk. There are known examples of underwriting risk that have the 
potential to be very heavy-tailed, though very few of them occur in the life insurance industry. 
One possible life insurance example would be a contagion event such as a repeat of the 1918 flu 
epidemic scenario. However, more in-depth modeling suggests this risk is qualitatively similar to 
Vasicek’s credit risk model described earlier since they are both basically contagion models. 
 

The arguments presented here are intended to be indicative rather than comprehensive. 
The point is that very heavy-tailed risks are the exception rather than the rule, so we would 
expect aggregation approaches based on elliptical models to have an element of conservatism 
relative to more sophisticated models.  

 
2 90.0% 95.0% 99.0% 99.5% 99.9% 100.0%

1.29   0.28     0.27   0.25  0.24  0.22  
230% 0.39     0.37   0.34  0.33  0.31  0.00
129% 0.28     0.27   0.25  0.24  0.22  0.00
84% 0.21     0.20   0.19  0.18  0.17  0.00
59% 0.16     0.15   0.15  0.14  0.13  0.00
44% 0.12     0.12   0.11  0.11  0.11  0.00
34% 0.09     0.09   0.09  0.09  0.09  0.00
27% 0.06     0.07   0.07  0.07  0.07  0.00
22% 0.04     0.05   0.05  0.06  0.06  0.00
10% (0.03)    (0.01)   0.01  0.01  0.02  0.00
5% (0.06)    (0.04)   (0.02)  (0.01)  (0.00)  0.00
3% (0.08)    (0.06)   (0.03)  (0.03)  (0.02)  0.00
2% (0.09)    (0.07)   (0.04)  (0.04)  (0.02)  0.00
2% (0.10)    (0.08)   (0.05)  (0.04)  (0.03)  0.00
1% (0.11)    (0.09)   (0.06)  (0.05)  (0.03)  0.00
1% (0.12)    (0.10)   (0.06)  (0.05)  (0.04)  0.00
0% (0.14)    (0.11)   (0.08)  (0.07)  (0.05)  0.00
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Appendix 4. Estimating Tail Correlation Using the Direct Method  
 
It was argued in Section 1 of this paper that it was reasonable to assume that the capital 

aggregation function is homogeneous of degree 1 in its arguments, meaning that 
),...,(),...,(0 11 nn ccCccC λλλλ =⇒> . Any function with this property satisfies two conditions 

that follow from differentiating the above equation with respect to λ   and then setting 1=λ .  
 

Differentiating once we find: 
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and differentiating a second time we get the result: 
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The first result can be used to show that if ii cCD ∂∂= /  then the approximation 

∑≈
i

iki ccDC )( 0 is the same as a first order Taylor expansion about the point 0
ic . 

 

If, in addition, the function C is positive and if we put 
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CD
∂∂

∂
=

22

2
1 , then the 
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,

0 )(  has second order contact with the function C in a 

neighborhood of the base point 0
ic . 

 
When there is no closed form expression telling us how to aggregate capital we need 

tools that can estimate the quantities described above from real or simulated data. In general, the 
required formulae vary according to the choice of risk measure. For the case where the risk 
measure is CTE(u) and ∑= iXX , we have argued in Appendix 1 that:  
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where uX  is the VaR of X at the level u and )(xf X is the probability density function of X.  
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The tail correlation matrix is then given by:  
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Estimating first derivatives is not problematic; the challenge is estimating the second 

derivatives. There are two general methods for doing this 
 

• Direct Methods that try to estimate ijD using the formula above. A random sample 
of values is used to estimate uX , and then adjust the data to get a sample from the 
conditional distribution given uXX = . We will show that this can be done fairly 
easily when there are practical ways of calculating the probability density of the 
copula.  

 
• Indirect Methods. The idea here is to use the simulation model or data to estimate 

the risk measure at a number of pivot points A
ic in a neighborhood of the base 

point 0
ic . If ),...,( 1

A
n

AA ccCC = , then we should be able to estimate the tail 
correlation matrix by fitting a formula approximation of the form 

∑=
ji

A
j

A
iij

A ccDC
,

to the empirical results. 

 
The Indirect Method has several advantages over the Direct Method. These are 
 
1. It requires no special formulae. It will work for any risk measure or copula, etc., 

although working with CTE makes it much easier to estimate the sampling 
covariance matrix ),( BAAB CCCov=Σ  . 

 
2. By choosing the pivot points appropriately, we can know in advance how far we 

can go from the base point and still have the approximation hold. 
 
The main disadvantage of the Indirect Method is that it uses more computer resources 

than the Direct Method. Whether this is important or not will depend on the software platform 
being used. 
 

Assume our simulation model has produced raw output consisting of an )2( +× nN array 
where the first n columns are samples from the component risks niX Ai ,...,1, = , the n+1’st 
column is the total risk ∑=

i
AiA XX , and the last column is a statistical weight factor AW  that 

would arise if an importance sampling24 technique were being used. We assume the matrix has 
been sorted on the total risk so that ...21 ≥≥ XX  etc. 
 
                                                           
24 The examples reported earlier in this paper did not use importance sampling so NWA /1= . 
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Let u be the confidence level that we are using to estimate CTE e.g. 99.=u . Define the 
indicator variable AH  by:  
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Also let }0|inf{ˆ >= AHAA  then estimators for iDC,  and )(XVaR  are given by:  
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For finite N the iDC, estimators are known to be negatively biased but the bias is 

typically much smaller than the sampling error.  
 

In order to estimate tail correlation we need to estimate the second derivatives of the 
capital function from:  
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 At a first glance this seems like an almost impossible task, but it can be solved with a 
mathematical trick. The trick is to use the available data to generate a sample from the 
conditional distribution of the component risks given that the total is at the VaR level. 
 

Given an estimator AX ˆ for )(XVaR , we can create a sample AiY  from the conditional 
distribution by setting:  
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 There is clearly nothing special about using the n’th risk as the balancing item here. 
 

The problem with this sample is that the probability of observing it is ),..,( 11 −nyyf and 

not ),..,( 1 nyyf  where ),..,( 1 nyyf  is the probability density function of our simulation model.  



44 

The solution is to introduce a statistical weight, which is the ratio of these two 
probabilities. Thus we define the weight: 
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If we can get our hands on this quantity, then estimators for ]|[ VaRXXEY ii == , 

]|[ VaRXXXEY jiij == and )(VaRf X  can be calculated as follows: 
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The estimator for the second derivative term is then just 
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−
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To calculate AJ , assume the simulation model’s distribution function ),...,( 1 nxxF is 

defined in terms of a second distribution function ),...,( 1 nttG by:  
 

)))(()),...,(((),...,( 1
11

1
11 nnnn xFGxFGGxxF −−= . 

 
 Here )( ii tG and )( ii xF are the marginal distribution functions. In the case of the t-copula, 

),...,( 1 nttG  is the multivariate Student-t distribution function and the iG  are the univariate  
marginal distribution functions . Differentiating the above equation once with respect to each 
variable yields: 
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It follows then that the ratio we are looking for is: 
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 If the model we have chosen is the t-copula, then all of the probability densities are 
known in closed form and can be easily programmed.  
 

Based on all of the above work we now have an estimator for the tail correlation matrix:  
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The method outlined above was first piloted in a spreadsheet and then rewritten in 

another language to get the results reported earlier in the paper. The fact that tail correlation is 
equal to linear correlation for elliptical models provides an important set of test cases that can be 
used to debug the software’s implementation.  
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Appendix 5. Estimating Tail Correlation Using the Indirect Method  
 
The idea behind the Indirect Method is to estimate the aggregate capital at a number of 

points in a neighborhood of the base point and then fit a formula to the resulting estimates. 
 

To fix notation, let 0
ic denote the capital requirements at the base point; let A

ic  A=1,…,M 

denote the capital mix at a set of neighboring points; and let ),...,(ˆˆ
1

A
n

AA ccCC =  be the estimated 
aggregate capital based on a set of simulations. We want to fit a formula of the form 

∑≈
ji

A
j

A
iij

A ccDC
,

ˆ  to the estimated capital amounts. 

 
Here are some of the considerations for choosing the pivot points A

ic . 
 

1. Since the tail correlation matrix is symmetric, we need to estimate n diagonal 

elements and
2

)1( −nn  off diagonal elements for a total of   
2

)1( +nn  unknowns. 

This is the minimum number of points that must be used and shows that, as the 
number of risks n in the model grows, the computational cost grows as 2n . For 
the Direct Method, the computational cost is of order n.  

 
2. The pivot points should cover a neighborhood of the base point in a fairly even 

way. No particular direction should get special treatment. 
 
3. There is sampling error in each of the estimates. We need to take this into account 

either when fitting a formula or assessing the goodness of fit afterwards. If the 
errors in the formula are comparable to the sampling error for a suitably large 
sample size N, then we should be happy with the result.  

 
One approach is to create pivot points by rotating the base point 0

ic in each of the 

2
)1( −nn coordinate planes through the angles 

2
10. πθ ±= . The factor of 10.  determines the size 

of the neighborhood we are using. This approach recognizes the scaling symmetry 
),...,(),...,( 11 nn ccCccC λλλ =  and treats each of the inputs 0

ic  in a symmetric way. The total 
number of pivot points is then Mnnnn =+−=−×+ 12/)1(21 2 . This exceeds the minimum as 
long as 3≥n . This is clearly not the only way to choose pivot points. 
 

The method of influence functions can be used to estimate the sampling error in each of 
these quantities.25  Let NCMAIF A

C ,...1)(;,...,1)( == be the (unsorted) influence function for the 

estimator AĈ .  
 
                                                           
25 See Section 5 of the paper, “Variance of the CTE Estimator,” by Manistre & Hancock, North American Actuarial 

Journal 9(2) (2005). 
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Then: 
 

∑
=

=Σ
N

C

B
C

A
C

AB IFIF
N 1)(

)()(2

1  

 
is an estimate of the sampling covariance )ˆ,ˆ( bA CCCov . Let 1)( −Σ=Σ AB

AB  and let 

∑=
ji

A
j

A
iij

A ccDF
,

be a formula value based on an estimated tail correlation matrix ijD . If AF  is 

a reasonable estimate of the true aggregate capital AC , and the sample size is large enough, then 
the quantity: 
 

∑ −−Σ=
BA

BBAA
AB CFCF

,

2 )ˆ)(ˆ(χ  

 
has an approximate Chi-square distribution with M degrees of freedom. This suggests the 
following strategy: 
 

1. Let ABG be any positive definite symmetric matrix. 
 
2. Estimate the tail correlation matrix by choosing ijD  to be the positive semi-

definite matrix that minimizes the fit measure: 

∑ −−
BA

BBAA
AB CFCFG

,

)ˆ)(ˆ( . 

 
3. Decide on the quality of the fit by looking at the 2χ statistic or by examining other 

measures such as relative absolute error, etc. 
 

One possible choice for the fit measure is 2χ  itself. However, the optimization process 
will exploit any quirks in the estimated covariance matrix so this is not recommended. 
 

Another choice is ABAB IG = , the identity matrix. Test work so far suggests that this leads 
to reasonable results. 
 

Here is a short list of the pros and cons of the Direct Method versus the Indirect Method  
 

• In the a spreadsheet environment, with 4=n , one iteration of the Indirect Method 
takes almost 10 times longer to run than one iteration of the Direct Method. 

 
• The two methods produce the same result, within sampling error, but the precision 

of the Indirect Method does not seem to warrant the additional run time. So far the 
main value of the Indirect Method, to the author, has been to act as an 
independent check on the Direct Method.  
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• The Indirect Method has the technical advantage of being more widely applicable 

and uses very little theory. The Direct Method requires knowledge of the copula 
generating the data and becomes more difficult to work with if a risk measure 
other than CTE is used.  

 
• The Indirect Method has the technical disadvantage of requiring more run time, 

and it may run into issues as the size of the optimization problem increases.  


