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Abstract 
 
In this paper, we formulate the Capital Allocation problem as an optimization problem in 
which we seek the mix of business that maximizes an insurance company’s Expected Net 
After Tax Income subject to a constraint on the Tail Value at Risk (TVAR).  Using the 
method of Lagrange multipliers, we demonstrate that the returns on the respective TVAR 
contributions, so-called RORAC, are equal across all lines of business when the mix of 
business is optimal.  We refer to this state as RORAC Equilibrium.  We then investigate 
the impact on RORAC Equilibrium of introducing premium constraints in the 
optimization problem.   We show that these constraints impose a cost on the company’s 
Net After Tax Income.  When the line of business returns are adjusted for the applicable 
costs, equilibrium is maintained.   Using commercially available optimization software, 
we solve the optimization problem for a fictitious start-up company and we show several 
points on the so-called efficient frontier curve of the company.  Cases with various 
premium constraints are also examined.  Although the discussions in this paper center on 
the TVAR, the conclusions hold true for any conditional expected value measure.  
 
Keywords: Optimization; Lagrange Function; Lagrange Multipliers; Capital Allocation; 
RORAC Equilibrium. 
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Introduction  
 
Capital Allocation remains one of the most intriguing and perhaps most controversial 
topics in the Casualty Actuarial literature and, indeed, in the financial literature.  The 
recent crisis in the financial industry has put the spotlight on Enterprise Risk 
Management and has added vigor to the debate on Capital Allocation.  Actuarial thinking 
is divided into two firmly entrenched camps: those who believe that Capital can be 
allocated and those who don’t believe that it can.   
 
But what is Capital Allocation and why is it relevant?  Actuaries on both sides of the 
allocation debate have implicitly defined Capital Allocation as the decomposition or 
division of “Capital” into pieces that can be assigned to business units, lines of business, 
or even individual contracts.  The goals of this decomposition – Venter [7] reminds us – 
“include testing the profitability of business units and determining which units could best 
be grown to add value to the firm.”  While the explicit decomposition of “Capital” might 
well be one of many available processes that companies rely on in order to make 
allocation decisions, this decomposition process itself need not define Capital Allocation.  
In this paper, we define Capital Allocation more generically as: 
 

…[any] process of how businesses divide their financial resources and other 
sources of capital to different processes, people and projects. Overall, it is 
management's goal to optimize capital allocation so that it generates as 
much wealth as possible for its shareholders.   Investopedia [3] 

 
In a generic sense, all insurance companies allocate their Capital.  By virtue of being in 
business, insurance companies routinely decide between expanding into or retreating 
from a territory, launching a new product or discontinuing an underperforming one, or 
simply renewing or canceling an insurance contract.  All of these are Capital Allocation 
decisions, few of which, we suspect, ever involve the decomposition of Capital.  The 
question should not so much be whether companies allocate Capital since they all do.  
Rather the question should be whether a company’s allocation of Capital is efficient.  
Capital Allocation is efficient when it results in the greatest return for a given amount of 
risk or, alternatively, when it results in the lowest amount of risk for a given return.  
 
In this paper, we endeavor to find an efficient allocation of Capital: that is to find a mix 
of business that maximizes shareholder wealth subject to various risk and premium 
constraints that may be imposed by the shareholders themselves, regulators, rating 
agencies, or the marketplace.  This is a constrained optimization problem similar, for 
instance, to that confronted by an industrial company that has to choose the mix of 
production methods that maximizes income while facing limits on its pollution emission.   
 
The remainder of this paper is organized as follows:  In section 1, we establish some 
definitions.  In section 2, we formulate the optimization problem without any premium 
constraints – except that premiums are assumed to be positive. Using the Lagrange 
function and Lagrange multipliers, we demonstrate the principal result of this paper: that 
RORAC is equal across all lines of business when the mix of business is optimal.  In 



section 3, we add premium constraints to the basic optimization problem.  Again, using 
the method of Lagrange multipliers, we show that when RORAC is adjusted for the costs 
imposed by the premium constraints, equilibrium is maintained.  In section 4, we solve 
the optimization problem for a fictitious start-up company.  We show several points on 
the so-called efficient frontier curve of the company and we offer some observations.   
 
Section 1 – Definitions 
 
For all the debate about Capital Allocation, it is not always clear which Capital is being 
discussed or being allocated.  The term Capital is used in at least two different contexts.  
On the one hand, Capital is understood simply as a measure of value, wealth, or the sum 
of all the current and future resources – financial, technical, technological, intellectual or 
other – available to a firm.  We refer to this as Real Capital.  On the other hand, the term 
Capital is used as a measure of the risk undertaken by the firm.  Examples of this measure 
include Variance, Value at Risk, Tail Value at Risk, or Expected Policyholder Deficit.  
We refer to this as Risk Capital.  Although these two notions of Capital intersect quite 
frequently, they are very distinct.  Real Capital is the reason companies are in business 
whereas Risk Capital is a constraint on business.  Companies look to grow or maximize 
Real Capital while they seek to limit or minimize Risk Capital.  Real Capital is a concrete 
accounting or financial measure defined by a relatively narrow set of rules whereas Risk 
Capital is in principle an abstract theoretical measure belonging to the realm of Statistics 
and Actuarial Science.  In this paper, we optimize Real Capital – or more precisely the 
change in Real Capital – subject to constraints on Risk Capital.  We optimize Real 
Capital by making decisions about the lines of business, contracts, or territories to which 
a company’s resources should be devoted.  As mentioned above, we think broadly of the 
company’s Real Capital as the aggregate of all its resources including its financial assets, 
its physical locations, its computer software and hardware, its underwriters, accountants, 
claim examiners, and, of course, actuaries.   
 
In this paper, we measure Real Capital as the present value of assets minus the present 
value of liabilities.  The change in Real Capital, as we have defined it, is represented by 
the Discounted Net After Tax Income.  In the remainder of this paper, we will refer to 
this as Net Income for short.  Risk Capital is measured by the Tail Value at Risk 
(TVAR) of Net Income.  Other measures used in the paper are defined as follows: 
 
RAROC = Expected Net Income ÷ Real Capital 
RORAC = Expected Net Income ÷ Risk Capital 
RORAC LOB i = Expected Net Income Contribution LOB i ÷ Risk Capital Contribution LOB i  

1 
Risk Leverage = Risk Capital ÷ Real Capital 
Premium Leverage = Premium ÷ Real Capital 
 
 
 

                                                 
1 Net Income Contribution and Risk Capital Contribution for a line of business are 
defined later in the paper. 
 



Section 2 - Mathematical Formulation of the basic Optimization Problem 
 
Assume a company has access to two lines of business2 and let 1p and 2p denote the 
premiums written in each line, respectively.  Net Income is written as a linear function of 

1p and 2p  as: 
BrprpIncomeNet ++= 2211   

where 1r  and 2r  are random variables representing the returns associated with 1p and 2p , 
respectively, and B is a function of random variables representing the balance of the Net 
Income equation which does not depend on 1p and 2p .  Let ),( 21 rrf represent the joint 
distribution3 of the random variables 1r  and 2r .  Let βTVAR  represent the thβ percentile 
tail value at risk of Net Income.  We want to maximize the Expected Value of Net 
Income subject to a constraint on the Tail Value at Risk of Net Income. 
 
We seek 1p and 2p that: 
 
Maximize:  )()()( 2211 BErEprEp ++     (2.1) 

subject to:  ( ) 021212211 ),(1 LdrdrrrfBrprp
C

≥++∫∫β
4  (2.2) 

where { }βVARBrprptsBrrppC ≥++= 22112121 ..),,,,( , βVAR represents the 
thβ percentile Value at Risk, and 0L represents the constraint on the TVAR.  Also, we 

assume the premiums are non-negative so that: 
01 ≥p        (2.3) 

  02 ≥p        (2.4) 
 
We rewrite the optimization problem in standard form5 as: 
 
Maximize:  )()()( 2211 BErEprEp ++     (2.1’) 

                                                 
2 The problem can be easily extended to n lines of business.  Also, we can substitute individual contracts 
for lines of business. 
3 We assume that this distribution does not depend on the values of p1 and p2.    This is consistent with a 
competitive market assumption in which no one company can influence price levels. It is possible that 
certain niches of the insurance market may in fact violate that assumption.  Certainly, one should be able to 
adjust the Net Income formula to reflect a Combined Ratio distribution that varies with the premium 
amount.  The optimization problem probably becomes much thornier 

4 Alternatively, for discrete distributions ∑ ++=
C

rrpBrprpTVAR ),()(1
212211ββ  

5 The optimization problem in standard form is typically written as: 

 Minimize (Maximize) )(0 xf  

subject to   mixfi ,,1,0)( L=≤  

  pixhi ,,1,0)( L==  
 



subject to:  ( ) 021212211 ),(1 LdrdrrrfBrprp
C

−≤++− ∫∫β
  (2.2’) 

  01 ≤− p       (2.3’) 
  02 ≤− p       (2.4’) 
 
We write the Lagrange function6 of the Optimization problem as: 
   

)()()(),,,,( 221121021 BErEprEppp ++=Λ λλλ  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+++− ∫∫ 0212122110 ),(1 LdrdrrrfBrprp

Cβ
λ  2211 pp λλ −−  (2.5)    

 
Taking partial derivatives7 of the Lagrange function with respect to 1p and 2p  yields: 

12121101
1

),(1)( λ
β

λ −⎥
⎦

⎤
⎢
⎣

⎡
−=

∂
Λ∂

∫∫
C

drdrrrfrrE
p

    (2.6) 

 

22121202
2

),(1)( λ
β

λ −⎥
⎦

⎤
⎢
⎣

⎡
−=

∂
Λ∂

∫∫
C

drdrrrfrrE
p

   (2.7) 

Assuming 01 >p and 02 >p (otherwise, the problem is trivial), then 021 == λλ  
 
Setting (2.6) and (2.7) equal to zero yields: 
 

∫∫
=

C

drdrrrfr

rE

21211

1*
0

),(1
)(

β

λ       (2.8) 

 

∫∫
=

C

drdrrrfr

rE

21212

2*
0

),(1
)(

β

λ       (2.9) 

                                                 
6 Using the notations from footnote 5, the Lagrange function is given by: 

∑∑
==

++
p

i
ii

m

i
ii xhxfxf

11
0 )()()( μλ .  See S. Boyd [2] for a complete treatment of Lagrange functions.   

 
7 Equations (2.6) and  (2.7) rely on the following equality: 

( ) ( ) .2,1;),(1),(1
2121221121212211 =++

∂
∂

=++
∂
∂

∫∫∫∫ idrdrrrfBrprp
p

drdrrrfBrprp
p C iCi ββ

 
This equality is not trivial as the region C varies with p1 and p2.  It is demonstrated in Major [4] where the 
gradient of the TVAR is derived by applying the “Integral over the Surface” formula.  The latter formula is 
described and proven in Uryasev [9]. 
 



 
Then, we obtain from equations (2.8) and (2.9): 
 

∫∫∫∫
=

CC

drdrrrfr

rE

drdrrrfr

rE

21212

2

21211

1

),(1
)(

),(1
)(

ββ

   (2.10) 

 
Let *

1p and *
2p represent the solution to the optimization problem.  If we multiply both the 

numerator and the denominator of the left and right sides of equation (2.10) by *
1p and *

2p , 
respectively, we obtain our main result: 
 

∫∫∫∫
=

CC

drdrrrfrp

rEp

drdrrrfrp

rEp

21212
*
2

2
*
2

21211
*
1

1
*
1

),(1
)(

),(1
)(
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   (2.11) 

where ∫∫
C

drdrrrfrp 21211
*
1 ),(1

β
, ∫∫

C

drdrrrfrp 21212
*
2 ),(1

β
, and )( 1

*
1 rEp , )( 2

*
2 rEp represent 

the respective Tail Value at Risk Contributions (or Risk Capital Contributions)8 and  
respective Expected Net Income Contributions of lines 1 and 2.  We will refer to (2.11) 
as the RORAC Equilibrium Equation. 
 
 Section 3 - Mathematical Formulation of the Optimization Problem with Premium 
Constraints 
 
Let’s now introduce premium constraints to the original optimization problem. 
 
We seek 1p and 2p that: 
 
Maximize:  )()()( 2211 BErEprEp ++     (3.1) 

Subject to:  ( ) 021212211 ),(1 LdrdrrrfBrprp
C

≥++∫∫β
  (3.2) 

  01 ≥p        (3.3) 
  02 ≥p        (3.4)   
  11 lp ≤        (3.5) 

22 lp ≤       (3.6) 

321 lpp ≤+       (3.7) 
 
We rewrite the optimization problem in standard form as: 
 
Maximize:  )()()( 2211 BErEprEp ++     (3.1’) 

                                                 
8 See Venter [8] for some background on the notion of Risk Contributions. 



subject to:  ( ) 021212211 ),(1 LdrdrrrfBrprp
C

−≤++− ∫∫β
  (3.2’) 

  01 ≤− p       (3.3’) 
  02 ≤− p       (3.4’) 
  11 lp ≤        (3.5’) 

22 lp ≤       (3.6’) 

321 lpp ≤+       (3.7’) 
 
We write the Lagrange function of the Optimization problem as: 
 

)()()(),,,,,,,( 221154321021 BErEprEppp ++=Λ λλλλλλ  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+++− ∫∫ 0212122110 ),(1 LdrdrrrfBrprp

Cβ
λ

)()()( 32152241132211 lpplplppp −++−+−+−− λλλλλ   (3.8) 
 

Taking partial derivatives of the Lagrange function with respect to 1p and 2p  yields: 
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Assuming 01 >p and 02 >p (otherwise, the problem is trivial), then 021 == λλ  
Setting (3.9) and (3.10) equal to zero yields: 
 

∫∫
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C
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Then, we obtain from equations (3.11) and (3.12): 
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Let *
1p and *

2p represent the solution to the optimization problem.  If we multiply both the 
numerator and the denominator of the left and right sides of equation (3.13) by *

1p and *
2p , 

respectively, we obtain the following: 
 

∫∫∫∫
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=

++
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where ∫∫
C

drdrrrfrp 21211
*
1 ),(1

β
and ∫∫

C

drdrrrfrp 21212
*
2 ),(1

β
represent the Tail Value at 

Risk Contributions of lines 1 and 2, respectively.  We refer to the left and right sides of 
equation (3.14) as the Adjusted RORAC for lines 1 and 2, respectively.  We refer to 
(3.14) as the Adjusted RORAC Equilibrium Equation. 
 
Interpretation of the Lagrange Multipliers 
 
The Lagrange multipliers lend themselves to some interesting interpretations.  Taking the 
partial derivatives of the Net Income function with respect to the constraint variables 
leads to the following equations:   
 

0

*
0

)(
L
IncomeNet
∂

∂
=λ        (3.15) 

3

*
3

)(
L
IncomeNet
∂

∂
−=λ       (3.16)  

4

*
4

)(
L
IncomeNet
∂

∂
−=λ       (3.17) 

5

*
5

)(
L
IncomeNet
∂

∂
−=λ        (3.18) 

 
*
0λ can be interpreted as the additional income that would be gained by relaxing the 

TVAR constraint (by one unit) when the portfolio is optimal.  Similarly, *
4

*
3 ,λλ , and 

*
5λ can be interpreted as the as the additional income that would be gained by relaxing the 

premium constraints ,, 43 LL and 5L  (by one unit), respectively, when the portfolio is 
optimal.  Economists typically refer to this as the shadow price of the constraint or the 
most the firm would be willing to pay to relax the constraint.  In the appendix, we derive 
equations (3.15) and (3.16). 
 
 
 
 
 
 



Section 4 – Allocating Capital for a Start-Up 
 
To illustrate these concepts, we will look to find the optimal business mix over a one-year 
time horizon9 for a start-up insurance entity to which shareholders have contributed 
$250M of seed money.  The entity has access to three lines of business: A, B, and C. We 
will generate 50,000 combined ratio scenarios based on the distributions given in the 
table below.   
 
Line of 
Business 

Comb Ratio 
Distribution 

Mean Standard 
Deviation 

A Lognormal 105% 20% 
B Lognormal 100% 32.5% 
C Lognormal 50% 40% 
 
Also, lines A and B have a dependency relationship defined by a Clayton Copula10 
with 2=θ .  This implies a rank correlation of about .68 between these two lines.  Line C 
is independent of both lines A and B.  It is assumed that the Loss Ratio distributions do 
not change with the volume of business that is written by the entity.  Premiums for all 
lines are paid at the beginning of the period.  Losses for lines A, B, and C are paid at the 
end of years 4, 5, and 1, respectively.   It is further assumed that the company’s assets are 
invested in a risk free security yielding a fixed annual return of 2.5%.   
 
The company’s Gross Income is subject to a 20% tax.  Let Ap , Bp , and Cp  denote the 
premiums written in lines A, B, and C and Aq , Bq , and Cq , the combined ratios associated 
with these lines. The company’s Net After Tax Income (in Millions) at the end of period 
1 is given by: 

 ( ) ( ) ( )
⎥⎦
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⎢⎣
⎡ −−−×+++××= CC

BBAA
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q
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⎠
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⎝
⎛ −+⎟

⎠
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⎜
⎝
⎛ −+=   

Let 3025.1
8.

82. A
A

q
r −= , 4025.1

8.
82. B

B
q

r −= , and CC qr 8.82. −= , then  

CCBBAA prprprIncomeNet +++= 5  
 

),,(),,( CBACBA rrrpqqqp =  
 
The company is subject to a constraint 0L  on the 1st Percentile Tail Value at Risk. 
 

                                                 
9 We are not recommending doing an allocation over a one-year time horizon.  The one-year horizon is 
used for computational ease. 
10The Clayton copula is given by:  .0);1();,( 2121 ≥−+= −− θθ θθ uuuuC    See Trivedi and Zimmer 
[6] for a description of the properties of the Clayton Copula 



 
Problem  1 – No premium Constraint 
 
The problem is stated as follows: 
 
Find Ap , Bp , and Cp that:  
 
Maximize CCBBAA prEprEprEIncomeNetExpected )()()(5 +++=  

Subject to:  [ ] 0%1 ),,(5
%1
1 LrrrpprprprTVAR

S
CBACCBBAA ≥+++= ∑  

where { }%1321321 ..),,,,,,( VARIncomeNettsBrrrpppS ≥=   
 

0≥Ap   
0≥Bp   
0≥Cp   

Using equation 2.5, we write the Lagrange function as 
5)()()(),,,,,( 3210 +++=Λ CCBBAACBA rEprEprEpppp λλλλ

[ ] ⎥
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⎤
⎢
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⎡
++++− ∑ 00 ),,(5

%1
1 Lrrrpprprpr

S
CBACCBBAAλ CBA ppp 321 λλλ −−−  

 
The RORAC Equilibrium Equation (2.11) for Problem 1 is written as:  
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The solutions to Problem 1 at various TVAR levels are shown in table 4.1.  In table 4.2, 
we show results for various points below the efficient frontier.  In Graph 4.1, we show 
both sets of points. 
 
Problem 2 –  Constraint: Total Premium for lines A, B, and C capped at 300M 
 
The problem is stated as follows: 
 
Find Ap , Bp , and Cp that:  
Maximize CCBBAA prEprEprEIncomeNetExpected )()()(5 +++=  

Subject to:  [ ] KrrrpprprprTVAR
S

CBACCBBAA ≥+++= ∑ ),,(5
%1
1

%1  

where { }%1321321 ..),,,,,,( VARIncomeNettsBrrrpppS ≥=  
0≥Ap   
0≥Bp   
0≥Cp  



300≤++ CBA ppp  
Using equation 3.8, we write the Lagrange function as 
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The Adjusted RORAC Equilibrium Equation (3.14) for Problem 2 is written as:  
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The solutions to Problem 2 at various TVAR levels are shown in table 4.3. 
  
Problem 3 – Constraint: Premium for line C capped at 150M 
 
The problem is stated as follows:  
 
Find Ap , Bp , and Cp that:  
Maximize CCBBAA prEprEprEIncomeNetExpected )()()(5 +++=  

Subject to:  [ ] KrrrpprprprTVAR
S

CBACCBBAA ≥+++= ∑ ),,(5
%1
1

%1  

where { }%1321321 ..),,,,,,( VARIncomeNettsBrrrpppS ≥=  
 0≥Ap   

0≥Bp   
0≥Cp   

 150≤Cp  
Using equation 3.8, we write the Lagrange function as 
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The Adjusted RORAC Equilibrium Equation (3.14) for Problem 3 is written as:  
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The solutions to Problem 3 at various TVAR levels are shown in table 4.4. 
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Observations 
 
The preceding tables and graphs lead to several interesting observations.  Here we 
highlight a few: 
 

• At the portfolio level, RORAC, as we have defined it, is an incomplete measure 
of profitability.  The risk leverage tells the rest of the story.  Table 4.1 shows that 
RORAC and RAROC have in fact an inverse relationship on the efficient frontier.  
Portfolio 1’s RORAC of 71.6% would not necessarily endear it to shareholders 
willing to accept more risk as they are realizing only a 7.2% return on their 
investment. 

• At the line of business level, RORAC, as we have defined it, is a poor and 
perhaps misleading measure of a line’s profitability or even relative profitability.  
In table 4.3, for instance, Portfolio 23 produces RORAC of 93%, 50%, and 40% 
for lines A, B, and C, respectively.  As it turns out, each line is performing exactly 
as it should given the constraints under which the company is operating, and the 
portfolio is optimal.  The Adjusted RORACs are in perfect equilibrium.   Is line A 
the most profitable one of the three?  Should the company binge on line A?  The 
answer to both questions is obviously no.  In table 4.4, the RORAC for line C 
increases from 47% to 155% from Portfolio 30 through 34.  Yet, the premium for 
line C remains unchanged for these five portfolios, which are all optimal.  Is line 
C suddenly more profitable in portfolio 34 than it was in the previous 4?  Again, 
the answer is no. 

• The preceding tables further illustrate why Premium Leverage is a poor and 
perhaps misleading measure of portfolio risk.  As the premium leverage does not 
take into account the unique characteristics of a portfolio, using premium leverage 
even as a rough gauge of risk is inappropriate.  For instance, in table 4.2, we show 
several portfolios with a premium leverage of 1.00, yet with drastically different 
risk leverage.  Worse, comparing portfolio 6 in table 4.1 to portfolio 18 in table 
4.2 shows that while Portfolio 6 has 50% more premium leverage, it has about 
half the risk of portfolio 21.  

 
Conclusion 
 
This paper does not present a new approach to dealing with the Capital Allocation 
problem as much as it frames the problem in a different light.  Many of the elegant 
and clever Capital Allocation schemes that have been published, including Myers and 
Read’s [5] or, more recently, Bodoff’s [1], are in fact Risk Capital decomposition 
schemes.  It has been argued that many of these schemes lack an economic 
foundation and are rather arbitrary.  Worse, these schemes could lead to the wrong 
decisions.  As we have observed above, RORAC measures can be misleading 
indicators of profitability.   
 
Our approach is based on one fundamental economic principle: Companies aim to 
maximize shareholder wealth.  In doing so, they have to navigate various 
constraints that are imposed on them.  When the TVAR is used as a risk constraint, it 



leads to Equilibrium Equations (2.11) and (3.14).  These equations are a byproduct of 
our approach but not its foundation.  Similar results may be obtained with other 
conditional expected value measures.  In fact, the optimization approach is still valid 
even when equations (2.11) and (3.14) do not hold as would be the case, say, with a 
Value at Risk measure. 
  
We have left many questions unanswered in this paper.  Most notably, we have not 
broached the question of whether the solutions to the optimization problem are unique 
nor have we investigated what happens when the competitive market assumption is 
violated.  Nevertheless, we hope this framing of the Capital Allocation question will 
spur further debate and that new ideas will emerge in the process.   
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Interpretation of the Lagrange Multipliers 

 
We introduce functions ),( 21 pph and 5,,1,0),( 21 L=ippgi ,  and rewrite equations 
(3.1’) through (3.7’) and (3.8) as follows: 
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For simplicity, we drop the arguments in the functions and write (A9) as:  
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Derivation of *
0λ  

 
Using the chain rule, we take the partial derivative of h with respect to 0L  and obtain: 
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Using the chain rule and equation (A2) we obtain: 
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Multiplying (A12) above by 0λ , we get: 
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Similarly, we obtain the following from A5, A6, and A7: 
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Adding (A13), A(15), A(17), and A(19) to A(11) yields: 
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Derivation of *
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Using the chain rule, we take the partial derivative of h with respect to 3L  and obtain: 
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Using the chain rule and equation (A5) we obtain: 
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Multiplying (A23) above by 3λ , we get: 
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Similarly, we obtain the following from A2, A6, and A7: 
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Adding (A24), A(26), A(28), and A(30) to A(22) yields: 
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