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Efficient Capital Allocation through Optimization

Romel Salam, FCAS, MAAA

Abstract

In this paper, we formulate the Capital Allocation problem as an optimization problem in
which we seek the mix of business that maximizes an insurance company’s Expected Net
After Tax Income subject to a constraint on the Tail Value at Risk (TVAR). Using the
method of Lagrange multipliers, we demonstrate that the returns on the respective TVAR
contributions, so-called RORAC, are equal across all lines of business when the mix of
business is optimal. We refer to this state as RORAC Equilibrium. We then investigate
the impact on RORAC Equilibrium of introducing premium constraints in the
optimization problem. We show that these constraints impose a cost on the company’s
Net After Tax Income. When the line of business returns are adjusted for the applicable
costs, equilibrium is maintained. Using commercially available optimization software,
we solve the optimization problem for a fictitious start-up company and we show several
points on the so-called efficient frontier curve of the company. Cases with various
premium constraints are also examined. Although the discussions in this paper center on
the TVAR, the conclusions hold true for any conditional expected value measure.

Keywords: Optimization; Lagrange Function; Lagrange Multipliers; Capital Allocation;
RORAC Equilibrium.
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Introduction

Capital Allocation remains one of the most intriguing and perhaps most controversial
topics in the Casualty Actuarial literature and, indeed, in the financial literature. The
recent crisis in the financial industry has put the spotlight on Enterprise Risk
Management and has added vigor to the debate on Capital Allocation. Actuarial thinking
is divided into two firmly entrenched camps: those who believe that Capital can be
allocated and those who don’t believe that it can.

But what is Capital Allocation and why is it relevant? Actuaries on both sides of the
allocation debate have implicitly defined Capital Allocation as the decomposition or
division of “Capital” into pieces that can be assigned to business units, lines of business,
or even individual contracts. The goals of this decomposition — Venter [7] reminds us —
“include testing the profitability of business units and determining which units could best
be grown to add value to the firm.” While the explicit decomposition of “Capital” might
well be one of many available processes that companies rely on in order to make
allocation decisions, this decomposition process itself need not define Capital Allocation.
In this paper, we define Capital Allocation more generically as:

...[any] process of how businesses divide their financial resources and other
sources of capital to different processes, people and projects. Overall, it is
management's goal to optimize capital allocation so that it generates as
much wealth as possible for its shareholders. Investopedia [3]

In a generic sense, all insurance companies allocate their Capital. By virtue of being in
business, insurance companies routinely decide between expanding into or retreating
from a territory, launching a new product or discontinuing an underperforming one, or
simply renewing or canceling an insurance contract. All of these are Capital Allocation
decisions, few of which, we suspect, ever involve the decomposition of Capital. The
question should not so much be whether companies allocate Capital since they all do.
Rather the question should be whether a company’s allocation of Capital is efficient.
Capital Allocation is efficient when it results in the greatest return for a given amount of
risk or, alternatively, when it results in the lowest amount of risk for a given return.

In this paper, we endeavor to find an efficient allocation of Capital: that is to find a mix
of business that maximizes shareholder wealth subject to various risk and premium
constraints that may be imposed by the shareholders themselves, regulators, rating
agencies, or the marketplace. This is a constrained optimization problem similar, for
instance, to that confronted by an industrial company that has to choose the mix of
production methods that maximizes income while facing limits on its pollution emission.

The remainder of this paper is organized as follows: In section 1, we establish some
definitions. In section 2, we formulate the optimization problem without any premium
constraints — except that premiums are assumed to be positive. Using the Lagrange
function and Lagrange multipliers, we demonstrate the principal result of this paper: that
RORAC is equal across all lines of business when the mix of business is optimal. In



section 3, we add premium constraints to the basic optimization problem. Again, using
the method of Lagrange multipliers, we show that when RORAC is adjusted for the costs
imposed by the premium constraints, equilibrium is maintained. In section 4, we solve
the optimization problem for a fictitious start-up company. We show several points on
the so-called efficient frontier curve of the company and we offer some observations.

Section 1 — Definitions

For all the debate about Capital Allocation, it is not always clear which Capital is being
discussed or being allocated. The term Capital is used in at least two different contexts.
On the one hand, Capital is understood simply as a measure of value, wealth, or the sum
of all the current and future resources — financial, technical, technological, intellectual or
other — available to a firm. We refer to this as Real Capital. On the other hand, the term
Capital is used as a measure of the risk undertaken by the firm. Examples of this measure
include Variance, Value at Risk, Tail Value at Risk, or Expected Policyholder Deficit.
We refer to this as Risk Capital. Although these two notions of Capital intersect quite
frequently, they are very distinct. Real Capital is the reason companies are in business
whereas Risk Capital is a constraint on business. Companies look to grow or maximize
Real Capital while they seek to limit or minimize Risk Capital. Real Capital is a concrete
accounting or financial measure defined by a relatively narrow set of rules whereas Risk
Capital is in principle an abstract theoretical measure belonging to the realm of Statistics
and Actuarial Science. In this paper, we optimize Real Capital — or more precisely the
change in Real Capital — subject to constraints on Risk Capital. We optimize Real
Capital by making decisions about the lines of business, contracts, or territories to which
a company’s resources should be devoted. As mentioned above, we think broadly of the
company’s Real Capital as the aggregate of all its resources including its financial assets,
its physical locations, its computer software and hardware, its underwriters, accountants,
claim examiners, and, of course, actuaries.

In this paper, we measure Real Capital as the present value of assets minus the present
value of liabilities. The change in Real Capital, as we have defined it, is represented by
the Discounted Net After Tax Income. In the remainder of this paper, we will refer to
this as Net Income for short. Risk Capital is measured by the Tail Value at Risk
(TVAR) of Net Income. Other measures used in the paper are defined as follows:

RAROC = Expected Net Income + Real Capital

RORAC = Expected Net Income + Risk Capital

RORAC o i = Expected Net Income Contribution | og; + Risk Capital Contribution | og !
Risk Leverage = Risk Capital + Real Capital

Premium Leverage = Premium + Real Capital

! Net Income Contribution and Risk Capital Contribution for a line of business are
defined later in the paper.



Section 2 - Mathematical Formulation of the basic Optimization Problem

Assume a company has access to two lines of business® and let p,and p,denote the
premiums written in each line, respectively. Net Income is written as a linear function of
p,and p, as:

Net Income = p,r, + p,r, +B
where r, and r, are random variables representing the returns associated with p,and p,,
respectively, and B is a function of random variables representing the balance of the Net
Income equation which does not depend on p,and p,. Let f(r,r,) represent the joint

distribution® of the random variablesr, and r,. Let TVAR » represent the B" percentile

tail value at risk of Net Income. We want to maximize the Expected Value of Net
Income subject to a constraint on the Tail Value at Risk of Net Income.

We seek p,and p,that:

Maximize: p,E(r,)+ p,E(r,) + E(B) (2.1)

subject to: %J‘J‘(plrl +p,r, + B)f(r,r,)drdr, > L,* (2.2)
C

where C = {(p,, p,,1,,1,, B)SL. p,F, + p,r, + B ZVARﬂ}, VAR ; represents the

B" percentile Value at Risk, and L, represents the constraint on the TVAR. Also, we

assume the premiums are non-negative so that:
p, 20 (2.3)
p,>0 (2.4)

We rewrite the optimization problem in standard form® as:

Maximize: p,E(r,)+ p,E(r,) + E(B) (2.1°)

% The problem can be easily extended to n lines of business. Also, we can substitute individual contracts
for lines of business.

¥ We assume that this distribution does not depend on the values of p, and p,.  This is consistent with a
competitive market assumption in which no one company can influence price levels. It is possible that
certain niches of the insurance market may in fact violate that assumption. Certainly, one should be able to
adjust the Net Income formula to reflect a Combined Ratio distribution that varies with the premium
amount. The optimization problem probably becomes much thornier

1
* Alternatively, for discrete distributions TVAR , = Ez (py1r + p,r, +B)p(r,r,)
C

® The optimization problem in standard form is typically written as:
fo (%)

f.(x)<0, i=1---,m
hi(x)=0, i=1--,p

Minimize (Maximize)

subject to



subject to: —%H(plr1 +p,r, +B)f(r,,r,)drdr, <-L, (2.27)
C

-p, <0 (2.3")
-p,<0 (2.47)

We write the Lagrange function® of the Optimization problem as:
A(Py, P2i Ay A4 4,) = PLE(R) + P,E(r,) + E(B)

1
_/I{E'”(plrl + P, + B)f (r,r,)drdr, + I—0:| — AP —4,P, (2.5)
c

Taking partial derivatives’ of the Lagrange function with respect to p,and p, yields:

A
P =E(r)-A [ jcjrlf(rl,rz)olrlolrz}/l1 (2.6)
(%AZ = E(rz)—/l{%grz f (rl,rz)drldrz}—/iz (2.7)

Assuming p, >0and p, > 0 (otherwise, the problem is trivial), then 4, =1, =0
Setting (2.6) and (2.7) equal to zero yields:

o E(rl)

A= (2.8)
—”rlf(rl, r,)dr,dr,
B

2 = Er) 2.9)

1
ﬂ”rz f(r,,r,)dr.dr,
C

¢ Using the notations from footnote 5, the Lagrange function is given by:

m p
fo(X) + z/”ti f.(x)+ z,ui h. (X) . See S. Boyd [2] for a complete treatment of Lagrange functions.
i1 i1

! Equations (2.6) and (2.7) rely on the following equality

> ,5’” p.r, + p,f, + B)f(r,,r,)drdr, = J.J' (p,r, + p,r, + B)f (r,,r,)drdr,; i=12.

This equality is not trivial as the region C varies with p; and p,. It is demonstrated in Major [4] where the
gradient of the TVAR is derived by applying the “Integral over the Surface” formula. The latter formula is
described and proven in Uryasev [9].



Then, we obtain from equations (2.8) and (2.9):

E(r) _ E(r,) (2.10)
;”rlf(rl,rz)drldrz ;”rzf(rl,rz)drldr2

Let p;and p,represent the solution to the optimization problem. If we multiply both the

numerator and the denominator of the left and right sides of equation (2.10) by p, and p,,
respectively, we obtain our main result:

[ pinf(r,n)drdr, [ psr, f(r,r,)drdr,
ﬂ C ﬂ C

where 1” p,r, f(r,,r,)drdr,, 1” p,r, f(r,,r,)drdr,, and p,E(r,), p,E(r,)represent
ﬂ C ﬂ C

the respective Tail Value at Risk Contributions (or Risk Capital Contributions)® and

respective Expected Net Income Contributions of lines 1 and 2. We will refer to (2.11)

as the RORAC Equilibrium Equation.

Section 3 - Mathematical Formulation of the Optimization Problem with Premium
Constraints

Let’s now introduce premium constraints to the original optimization problem.

We seek p,and p,that:

Maximize: p,E(r,)+ p,E(r,) + E(B) (3.1)
Subject to: %”(plrl + p,r, + B)f(r,r,)drdr, > L, (3.2)
C
p, =20 (3.3)
p, >0 (3.4)
p, <1y (3.5)
p, <1, (3.6)
P+ P, <l 3.7)

We rewrite the optimization problem in standard form as:

Maximize: p,E(r,)+ p,E(r,) + E(B) (3.1)

& See Venter [8] for some background on the notion of Risk Contributions.



subject to: —%J:[(plrl +p,r, +B)f(r,,r,)drdr, <-L, (3.2)
C

—p, <0 (33)
~p, <0 (3.4
P, <1, (35)
P, <1, (36"
P+ P, <1y (3.7)

We write the Lagrange function of the Optimization problem as:

APy Py Ay Ay Ay Ay Ay As) = PLE(N) + PLE(r,) + E(B)
—/I{%J;I(plrl + p,r, + B)f(r,r,)dr,dr, + LO}

— AP = 4,0, + A5 (P = 1) + A, (p, = 1) + A5 (P + P, = 15) (3.8)

Taking partial derivatives of the Lagrange function with respect to p,and p, yields:

oA 1

= —E(r) —ﬂo[—”rlf(rl, rz)drldrz}—ﬂl + A5+ A (3.9)
o, B¢

oA 1

—=E(r,)-4,| = rf(r,r)drdr}—i + A, + 4 (3.10)
8p2 2 O|:ﬂ'|;'|. 2 1072 1¥72 2 4 5

Assuming p, > 0and p, > 0 (otherwise, the problem is trivial), then 4, =4, =0
Setting (3.9) and (3.10) equal to zero yields:

. E(r)+ 4, + A

B= (3.11)
ﬂjcjrl f(r,,r,)drdr,
i = . E(r,) + 4, + A (3.12)
ﬂj;jrz f(r,r,)drdr,
Then, we obtain from equations (3.11) and (3.12):
E()+A4+4  _ E(M)+4+4 (3.13)

1 1
'B”rlf(rl,rz)drldrz ﬂ”rz f(r,r,)drdr,
C Cc



Let p, and p,represent the solution to the optimization problem. If we multiply both the
numerator and the denominator of the left and right sides of equation (3.13) by p, and p,,
respectively, we obtain the following:

1p:<%<r1)+z;+z;) _ 1p;(E*(r2WzM;) (3.14)

i j [ pirf(r,,r,)drdr, ¥ j [3r, f(r,,r,)drdr,

where %ICJ' p, 1, f(r,r,)drdr, and %Lf p,r, f(r,,r,)drdr, represent the Tail Value at
Risk Contributions of lines 1 and 2, respectively. We refer to the left and right sides of
equation (3.14) as the Adjusted RORAC for lines 1 and 2, respectively. We refer to
(3.14) as the Adjusted RORAC Equilibrium Equation.

Interpretation of the Lagrange Multipliers

The Lagrange multipliers lend themselves to some interesting interpretations. Taking the
partial derivatives of the Net Income function with respect to the constraint variables
leads to the following equations:

« _ O(Net Income)

P 3.15

. L (3.15)

P O(Net Income) (3.16)
oL,

P 0(Net Income) (3.17)
oL,

P o(Net Income) (3.18)
oL

A, can be interpreted as the additional income that would be gained by relaxing the
TVAR constraint (by one unit) when the portfolio is optimal. Similarly, 43, 4, , and
A, can be interpreted as the as the additional income that would be gained by relaxing the

premium constraints L,, L,, and L, (by one unit), respectively, when the portfolio is

optimal. Economists typically refer to this as the shadow price of the constraint or the
most the firm would be willing to pay to relax the constraint. In the appendix, we derive
equations (3.15) and (3.16).



Section 4 — Allocating Capital for a Start-Up

To illustrate these concepts, we will look to find the optimal business mix over a one-year
time horizon® for a start-up insurance entity to which shareholders have contributed
$250M of seed money. The entity has access to three lines of business: A, B, and C. We
will generate 50,000 combined ratio scenarios based on the distributions given in the
table below.

Line of Comb Ratio Mean Standard
Business Distribution Deviation
A Lognormal 105% 20%

B Lognormal 100% 32.5%

C Lognormal 50% 40%

Also, lines A and B have a dependency relationship defined by a Clayton Copula®™
with@ = 2. This implies a rank correlation of about .68 between these two lines. Line C
is independent of both lines A and B. It is assumed that the Loss Ratio distributions do
not change with the volume of business that is written by the entity. Premiums for all
lines are paid at the beginning of the period. Losses for lines A, B, and C are paid at the
end of years 4, 5, and 1, respectively. It is further assumed that the company’s assets are
invested in a risk free security yielding a fixed annual return of 2.5%.

The company’s Gross Income is subject to a 20% tax. Letp,, pg,and p. denote the
premiums written in lines A, B, and C and q,,qz, andq., the combined ratios associated
with these lines. The company’s Net After Tax Income (in Millions) at the end of period
1 is given by:

Net Incomez.8>{250><.025+(pA + Py + P )x1.025— (Pada) _ (Pla) _ pcqc} or

1.025°  1.025*

.8q .8q
Net Income =5+|.82 — A +|.82— B +(.82-.8
( 1.0253ij [ 1_0254jp3 ( 0c )Pe

.8q .89
Letr, =.82——2_ 1, =.82— 8 and r. =.82-.8q., then
A 1.025° "° 1.025* ¢ de

Net Income =5+r1,p, + g Pg +I'c P

p(qA'qB’qC)z p(rA7rB’rC)

The company is subject to a constraint L, on the 1% Percentile Tail Value at Risk.

° We are not recommending doing an allocation over a one-year time horizon. The one-year horizon is
used for computational ease.

The Clayton copula is given by: C(U,,U,;0) = (U, +u,’ —=1); @>0. See Trivedi and Zimmer
[6] for a description of the properties of the Clayton Copula



Problem 1 — No premium Constraint

The problem is stated as follows:

Find p,, pg,and p that:

Maximize Expected Net Income =5+ E(r,)p, + E(rg)ps + E(r:) pe
Subject to: TVAR,,, = %Z[SJF FaPa+TgPg + e Pe JP(FaFs 1) 2 L

0°s

where S ={(p,, P, Ps, 1,1, I, B) st. Net Income > VAR,,, }

Pa=0
Ps 20
pc 20
Using equation 2.5, we write the Lagrange function as
A(Par P Pedor A Ari Ag) = PAE(R,) + PgE(rs) + pc E(rc) +5
1
_AO{MZ[rApA + Ty Py + e Pe +5]p(ry, e, Fo) + LO} — A, Pa—,Pg — s Pe
S
The RORAC Equilibrium Equation (2.11) for Problem 1 is written as:
PAE(ra) _ PsE(rs) _ PcE(r)

1 1
D e Pe P(ra,fs. 1) > e peP(ra.rs. 1)

1
= N'r Mol le) =
1% 2 aPAP(ra T3, 1c) 1% 2 1% 2

The solutions to Problem 1 at various TVAR levels are shown in table 4.1. In table 4.2,

we show results for various points below the efficient frontier. In Graph 4.1, we show
both sets of points.

Problem 2 — Constraint: Total Premium for lines A, B, and C capped at 300M

The problem is stated as follows:

Find p,, pg, and p. that:

Maximize Expected Net Income =5+ E(r,)p, + E(rg)ps + E(r:) pe

Subject to: TVAR,,, = %ZE"‘ FaPa+TgPg +1c pC]p(rA’ re le) 2K
0

S
where S ={(p,, P, Ps.1,,1,, I, B) st. Net Income > VAR, }

Pa20
Ps 20
pc 20



P+ Pg + Pec <300
Using equation 3.8, we write the Lagrange function as
A(Pas Pes PoiAgs As gy Agi Ay) = PAE(r,) + P E(rg) + P E(re) +5

1
-2 L—(y Z[ aPa+TgPg +1cPc +5]p(rA,rB,rC)+ Lo}

_ﬂ"lpA_ 2 Ps _ﬂzpc +ﬂ'4(pA+ Peg + Pc _300)

The Adjusted RORAC Equilibrium Equation (3.14) for Problem 2 is written as:
PA(E(r)+4) pe(E(R)+4) pe(E(r)+4,)

: _ _
- rApAp(n,%,r) ZZerBp(m,&,r) }:n:pcp(m,&,r)

1% 1%

1%
The solutions to Problem 2 at various TVAR levels are shown in table 4.3.

Problem 3 — Constraint: Premium for line C capped at 150M

The problem is stated as follows:

Find p,, pg,and p that:
Maximize Expected Net Income =5+ E(r,)p, + E(r5) ps + E(rc) pe

Subject to: TVAR,,, =1Tl/02[5+ PP+l Pg + e Pe |P(Fa Fs, 1) 2 K
S

whereS ={(p,, P, Ps. 1., Iy, B) st. Net Income > VAR,,, }
Pa=0
ps 20
pc 20
pe <150
Using equation 3.8, we write the Lagrange function as
A(Pas Pes PoiAos As gy Agi Ay) = PAE(r,) + P E(rg) + P E(re) +5
1
) L(V D [rapa+1ePs +1cPe +5]p(ra,rs. 1) + LO}
_ﬂ"lpA - 2pB _ﬂzpc +ﬂ4(pc _150)

The Adjusted RORAC Equilibrium Equation (3.14) for Problem 3 is written as:

PAE(r,) _ PsE(r:) _ Pe(E(r)+4,)

1
W rApAp(rA’rB’r ) 1% ZerBp(rA’rB’r ) Zrc Pc p(rA’rB’r )

1%

The solutions to Problem 3 at various TVAR levels are shown in table 4.4.



Net After

Tax Risk Premium

Portfolio  TVAR Income RAROC RORAC Leverage Leverage
1 25.0 17.9 7.2% 71.6% 0.10 0.29
2 50.0 287  11.5% 57.3% 0.20 0.53
3 75.0 394 15.8% 52.5% 0.30 0.77
4 100.0 50.2 20.1% 50.2% 0.40 1.02
5 125.0 60.9 24.4% 48.7% 0.50 1.26
6 150.0 717  287% 47.8% 0.60 1.50
7 175.0 824 33.0% 47.1% 0.70 1.74
8 200.0 932 37.3% 46.6% 0.80 1.98
9 225.0 1039 41.6% 46.2% 0.90 2.23
10 250.0 1147  45.9% 45.9% 1.00 2.47
11 275.0 1254  50.2% 45.6% 1.10 2.71
12 300.0 136.2 54.5% 45.4% 1.20 2.95

RAROC = Expected Net After Tax Income/250M

RORAC = Expected Net Income/TVAR
RORAC y, Line = Expected Net Income Contribution/TVAR Contribution

Risk Leverage = TVAR/250M

Premium Leverage = Total Premium/250M

TVAR = XTVAR Contribution + 5M

Net After Tax Income = ZIncome Contributions + 5M

* Negative of TVAR and TVAR Contribution are shown

Table 4.1 - No Premium Constraint

Efficient Portfolios

LOB Premium TVAR Contribution Net Income Contribution RORAC
Line A Line B Line C Line A Line B Line C Line A Line B Line C Line A Line B Line C
26.5 231 22.9 2.5 5.2 22.4 1.1 2.2 9.6 43% 43% 43%
48.6 424 42.0 4.5 9.3 41.2 1.9 4.0 17.7 43% 43% 43%)
70.7 61.7 61.1 6.6 13.6 59.9 2.8 5.9 25.7 43% 43% 43%
92.8 81.0 80.2 8.6 17.8 78.6 3.7 7.7 33.7 43% 43% 43%)
114.9 100.3 99.3 10.7 22.4 96.9 4.6 9.5 41.8 43% 43% 43%
137.0 119.6 118.4 12.8 26.7 115.6 55 11.4 49.8 43% 43% 43%)
159.1 138.9 137.4 14.8 30.5 134.7 6.4 13.2 57.8 43% 43% 43%
181.2 158.2 156.5 16.9 35.3 152.8 7.2 15.1 65.9 43% 43% 43%)
203.3 177.5 175.6 18.9 39.0 1721 8.1 16.9 73.9 43% 43% 43%
225.4 196.7 194.7 20.9 43.2 190.8 9.0 18.7 81.9 43% 43% 43%)
247.5 216.0 213.8 23.0 47.5 209.5 9.9 20.6 90.0 43% 43% 43%
269.6 235.3 232.9 25.1 52.5 227.4 10.8 224 98.0 43% 43% 43%)




Portfolio

Net After
Tax

TVAR Income
100.0 40.1
100.0 174
100.0 14.3
110.2 42.3
127.6 53.2
309.6 110.2
164.5 29.3
269.2 63.3
206.2 84.1

RAROC RORAC Leverage Leverage

16.0%
7.0%
5.7%

16.9%

21.3%

44.1%
1.7%

25.3%

33.6%

40.1%
17.4%
14.3%
38.4%
41.7%
35.6%
17.8%
23.5%
40.8%

RAROC = Expected Net After Tax Income/250M
RORAC = Expected Net Income/TVAR
RORAC y, Line = Expected Net Income Contribution/TVAR Contribution

Risk Leverage = TVAR/250M

Premium Leverage = Total Premium/250M

TVAR = £TVAR Contribution + 5M

Net After Tax Income = XIncome Contributions + 5M
* Negative of TVAR and TVAR Contribution are shown

Risk Premium
0.40 0.33
0.40 0.52
0.40 0.93
0.44 1.00
0.51 1.00
1.24 1.00
0.66 1.60
1.08 2.00
0.82 2.20

Table 4.2 - No Premium Constraint

Inefficient Portfolios

LOB Premium TVAR Contribution Net Income Contribution RORAC
Line A Line B Line C Line A Line B Line C Line A Line B Line C Line A Line B Line C

- - 83.4 - - 105.0 - - 35.1 N/A N/A 33%)

- 130.7 - - 105.0 - - 12.4 - N/A 12% N/A
233.5 - - 105.0 - - 9.3 - - 9% N/A N/A|
50.0 150.0 50.0 6.0 104.4 4.8 2.0 14.3 21.0 33% 14% 437%
- 175.0 75.0 - 103.3 29.4 - 16.7 31.6 N/A 16% 107 %)

- - 250.0 - - 314.6 - - 105.2 N/A N/A 33%
250.0 150.0 - 75.6 93.9 - 10.0 14.3 - 13% 15% N/A|
100.0 350.0 50.0 12.3 275.7 (13.9) 4.0 33.3 21.0 32% 12% -152%
400.0 - 150.0 77.6 - 133.6 16.0 - 63.1 21% N/A 47%




Graph 4.1 - Efficient Frontier - No Premium Constraint
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Portfolio  TVAR
1 25.0
2 50.0
3 75.0
4 100.0
22 125.0
23 150.0
24 175.0
25 200.0
26 225.0
27 250.0
28 275.0
29 300.0

Net Atter
Tax
Income

17.9
28.7
39.4
50.2
60.8
70.6
79.8
87.8
94.7
101.2
107.6
113.7

RAROC

7.2%
11.5%
15.8%
20.1%
24.3%
28.2%
31.9%
35.1%
37.9%
40.5%
43.0%
45.5%

Risk

Premium

RORAC Leverage Leverage

71.6%
57.3%
52.5%
50.2%
48.7%
47.1%
45.6%
43.9%
42.1%
40.5%
39.1%
37.9%

RAROC = Expected Net After Tax Income/250M
RORAC = Expected Net Income/TVAR

RORAC y Line = Expected Net Income Contribution/TVAR Contribution

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

0.29
0.53
0.77
1.02
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20

Table 4.3 - Total Premium for lines A, B, and C capped at 300M

Efficient Portfolios

Premium Contribution TVAR Contribution Net Income Contribution RORAC Adjusted RORAC
Line A Line B Line C Line A Line B Line C Line A Line B Line C Line A Line B Line C Ay Line A Line B Line C
26.5 23.1 22.9 25 5.2 224 11 22 9.6 43% 43% 43%| 0%)| 43% 43% 43%|
48.6 42.4 42.0 4.5 9.4 411 1.9 4.0 17.7 43% 43% 43%| 0%) 43% 43% 43%|
70.7 61.7 61.1 6.6 13.8 59.6 2.8 5.9 25.7 43% 43% 43%| 0%) 43% 43% 43%|
92.8 81.0 80.2 8.7 18.1 78.3 3.7 7.7 33.7 43% 43% 43%| 0%) 43% 43% 43%|
96.2 103.6 100.1 7.6 22.2 100.3 3.8 9.9 421 51% 45% 42%| -1% 41% 41% 41%|
47.7 130.4 121.8 2.1 24.7 128.3 1.9 124 51.3 93% 50% 40%| -2% 38% 38% 38%)
2.1 155.5 142.5 0.0 26.6 1563.3 0.1 14.8 59.9 187% 56% 39%) -3% 37% 37% 36%)
- 133.4 166.6 - 8.0 197.0 - 12.7 70.1 N/A 159% 36%) -8% N/A 29% 29%)|
- 1121 187.9 - 0.6 229.4 - 10.7 79.0 N/A 1903% 34%) -9% N/A 27% 27%)|
- 921 207.9 - (2.9) 257.9 - 8.8 87.5 N/A -299% 34%) -10% N/A 26% 26%)|
- 72.7 227.3 - (4.1) 284.1 - 6.9 95.6 N/A -169% 34%) -11% N/A 25% 25%)
- 53.8 246.2 - (4.0) 309.0 - 5.1 103.6 N/A -129% 34%) -11% N/A 24% 25%)

Adjusted RORAC = (Net Income Contribution - A, X Premium Contribution)/ TVAR Contribution
Risk Leverage = TVAR/250M

Premium Leverage = Total Premium/250M

TVAR = ZTVAR Contribution + 5M
Net After Tax Income = ZIncome Contributions + 5M

* Negative of TVAR and TVAR Contribution are shown




Net Arter
Tax

Portfolio  TVAR ~ Income
1 25.0 17.9
2 50.0 28.7
3 75.0 39.4
4 100.0 50.2
5 125.0 60.9
6 150.0 71.7
7 175.0 82.4
30 200.0 927
31 225.0 99.8
32 250.0 105.4
33 275.0 110.3
34 300.0 114.8

RAROC

7.2%
11.5%
15.8%
20.1%
24.4%
28.7%
33.0%
371%
39.9%
42.2%
44.1%
45.9%

Risk

Premium

RORAC Leverage Leverage

71.6%
57.3%
52.5%
50.2%
48.7%
47.8%
47.1%
46.4%
44.4%
42.2%
40.1%
38.3%

RAROC = Expected Net After Tax Income/250M
RORAC = Expected Net Income/TVAR

RORAC y, ine = Expected Net Income Contribution/TVAR Contribution

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

0.29
0.53
0.77
1.02
1.26
1.50
1.74
2.1
2.58
2.94
3.25
3.55

Table 4.4 - Total Premium for line C capped at 150M

Efficient Portfolios

Premium Contribution TVAR Contribution Net Income Contribution RORAC Adjusted RORAC
Line A Line B Line C Line B Line C Line A e B Line C Line A Line B Line C Ay Line A Line B Line C
26.5 231 229 5.2 224 11 22 9.6 43% 43% 43% 0%)| 43% 43% 43%|
48.6 424 42.0 9.4 411 1.9 4.0 177 43% 43% 43%| 0%) 43% 43% 43%|
70.7 61.7 61.1 13.8 59.6 28 59 257 43% 43% 43%| 0%)| 43% 43% 43%|
92.8 81.0 80.2 18.1 78.3 3.7 77 33.7 43% 43% 43%| 0%) 43% 43% 43%|
114.9 100.3 99.3 22.4 96.9 46 9.5 41.8 43% 43% 43%| 0%)| 43% 43% 43%|
137.0 119.6 118.4 26.3 116.0 5.5 11.4 49.8 43% 43% 43%| 0%)| 43% 43% 43%|
159.1 138.9 137.4 30.5 134.7 6.4 13.2 57.8 43% 43% 43%| 0%)| 43% 43% 43%|
205.0 172.7 150.0 47.0 134.3 8.2 16.4 63.1 35% 35% 47%| -11%) 35% 35% 35%)|
277.8 216.7 150.0 85.3 98.8 1.1 20.6 63.1 24% 24% 64%)| -26% 24% 24% 24%)|
331.8 252.4 150.0 116.8 73.5 13.3 24.0 63.1 20% 21% 86%)| -32% 20% 21% 21%)|
377.7 284.1 150.0 146.1 52.6 15.1 27.0 63.1 19% 19% 120%| -36% 19% 19% 19%|
425.3 311.5 150.0 168.1 40.7 17 29.7 63.1 18% 18% 155%) -37% 18% 18% 18%]

Adjusted RORAC = (Net Income Contribution - A, X Premium Contribution)/ TVAR Contribution

Risk Leverage = TVAR/250M

Premium Leverage = Total Premium/250M

TVAR = ZTVAR Contribution + 5M
Net After Tax Income = ZIncome Contributions + 5M

* Negative of TVAR and TVAR Contribution are shown




TVAR

25

50

75
100
125
150
175
200
225
250
275
300

Table 4.5 - Efficient Frontier Comparison

Expected Net Income RAROC = Expected Net Income / 250M
Problem 1 - No Problem 2 - 300M Problem 3 - 150M|| Problem 1 - No Problem 2 - Problem 3 -

Constraints Constraint Constraint Constraints 300M Constraint 150M Constraint
17.9 17.9 17.9 7.2% 7.2% 7.2%

28.7 28.7 28.7 11.5% 11.5% 11.5%

39.4 39.4 39.4 15.8% 15.8% 15.8%

50.2 50.2 50.2 20.1% 20.1% 20.1%

60.9 60.8 60.9 24.4% 24.3% 24.4%

717 70.6 717 28.7% 28.2% 28.7%

82.4 79.8 82.4 33.0% 31.9% 33.0%

93.2 87.8 92.7 37.3% 35.1% 37.1%

103.9 94.7 90.8 41.6% 37.9% 39.9%

114.7 101.2 105.4 45.9% 40.5% 42.2%

125.4 107.6 110.3 50.2% 43.0% 44.1%

136.2 113.7 114.8 54.5% 45.5% 45.9%

* Negative of TVAR and TVAR Contribution are shown




Graph 4.2 - Efficient Frontier Comparison
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* Negative of TVAR and TVAR Contribution are shown



Observations

The preceding tables and graphs lead to several interesting observations. Here we
highlight a few:

e At the portfolio level, RORAC, as we have defined it, is an incomplete measure
of profitability. The risk leverage tells the rest of the story. Table 4.1 shows that
RORAC and RAROC have in fact an inverse relationship on the efficient frontier.
Portfolio 1’s RORAC of 71.6% would not necessarily endear it to shareholders
willing to accept more risk as they are realizing only a 7.2% return on their
investment.

e At the line of business level, RORAC, as we have defined it, is a poor and
perhaps misleading measure of a line’s profitability or even relative profitability.
In table 4.3, for instance, Portfolio 23 produces RORAC of 93%, 50%, and 40%
for lines A, B, and C, respectively. As it turns out, each line is performing exactly
as it should given the constraints under which the company is operating, and the
portfolio is optimal. The Adjusted RORACS are in perfect equilibrium. 1Is line A
the most profitable one of the three? Should the company binge on line A? The
answer to both questions is obviously no. In table 4.4, the RORAC for line C
increases from 47% to 155% from Portfolio 30 through 34. Yet, the premium for
line C remains unchanged for these five portfolios, which are all optimal. Is line
C suddenly more profitable in portfolio 34 than it was in the previous 4? Again,
the answer is no.

e The preceding tables further illustrate why Premium Leverage is a poor and
perhaps misleading measure of portfolio risk. As the premium leverage does not
take into account the unique characteristics of a portfolio, using premium leverage
even as a rough gauge of risk is inappropriate. For instance, in table 4.2, we show
several portfolios with a premium leverage of 1.00, yet with drastically different
risk leverage. Worse, comparing portfolio 6 in table 4.1 to portfolio 18 in table
4.2 shows that while Portfolio 6 has 50% more premium leverage, it has about
half the risk of portfolio 21.

Conclusion

This paper does not present a new approach to dealing with the Capital Allocation
problem as much as it frames the problem in a different light. Many of the elegant
and clever Capital Allocation schemes that have been published, including Myers and
Read’s [5] or, more recently, Bodoff’s [1], are in fact Risk Capital decomposition
schemes. It has been argued that many of these schemes lack an economic
foundation and are rather arbitrary. Worse, these schemes could lead to the wrong
decisions. As we have observed above, RORAC measures can be misleading
indicators of profitability.

Our approach is based on one fundamental economic principle: Companies aim to
maximize shareholder wealth. In doing so, they have to navigate various
constraints that are imposed on them. When the TVAR is used as a risk constraint, it



leads to Equilibrium Equations (2.11) and (3.14). These equations are a byproduct of
our approach but not its foundation. Similar results may be obtained with other
conditional expected value measures. In fact, the optimization approach is still valid
even when equations (2.11) and (3.14) do not hold as would be the case, say, with a
Value at Risk measure.

We have left many questions unanswered in this paper. Most notably, we have not
broached the question of whether the solutions to the optimization problem are unique
nor have we investigated what happens when the competitive market assumption is
violated. Nevertheless, we hope this framing of the Capital Allocation question will
spur further debate and that new ideas will emerge in the process.



APPENDIX

Interpretation of the Lagrange Multipliers

We introduce functions h(p,, p,)and g;(p,, p,) 1=0%1---,5, and rewrite equations
(3.17) through (3.7”) and (3.8) as follows:

Maximize: h(p,, p,) = p,E(r,) + p,E(r,) + E(B) Al
: 1
subject to: go(pl’ pz) = _EII(plrl + Pl + B)f (rl’ rz)drldr2 <-L, A2
C

9,(p;, P,) =—p, <0 A3

d,(p;, p,)=—p, <0 A4

g3(p11p2): p1SL3 AS

g4(p1,p2)= P, S|-4 A6

9s(PyyPy) =P+ P, < Lg AT

A(Py, P2y Ags Ais A,) = h(Py, P2) + 4690 (Pry P2) + 491 (P10 P2) + 4,9, (Py, P)
+2395(P1s P2) + 2449, (Prs P2) + 4595 (Pry P,) A8

Since we assume that 4, = 4, =0, we rewrite (A8) as
A(pl’ pz'j“o’/il'ﬂz) = h(pl’ pz)"'ﬂ“ogo(pl! pz)

+ 4305 (P1y P2) + 449, (Py, P2) + 4595 (P, P,) A9
For simplicity, we drop the arguments in the functions and write (A9) as:
A=h+1,9,+4,9; +4,9, + 4.0, A10

Derivation of 4,

Using the chain rule, we take the partial derivative of h with respect to L, and obtain:
oh _ ¢ch dp, N oh op,
oL, op, oL, 0p, oL,
Using the chain rule and equation (A2) we obtain:
09, 0P, , 29, 0P,
op, oL, op, oL,
Multiplying (A12) above by 4,, we get:
7, %0 30, 2, 0P,
op, oL, op, oL,
Similarly, we obtain the following from A5, A6, and A7:
09 0p, , 09; op,
op, oL, dp, oL,

All

+1=0 Al2

+2y=0 A13

=0 Al4



13 893 apl +13 893 apZ — A15

ap, oL, ap, oL,
09, 9Py 09, P, _ A16
op, oL, op, o,
/14 694 apl +14 8g4 apZ — A17

op, oL, op, oL,
a9s op, +6gs p, _ Al8
op, oL, op, oL,
15 ags apl +ﬂ,5 ags apz — A19

ap, oL, ap, oL,
Adding (A13), A(15), A(17), and A(19) to A(11) yields:
oh _oh op,  oh o, , 000 0P, , Py, 005 Oy, 20, 0P,
oL, op, oL, op, oL, op, oL, op, oL, op, oL, op, oL,

_}_2’4 8g4 apl _}_24 8g4 apZ +ﬂ“5 ags apl +ﬂ,5 ags 8pZ A20
op, oL, op, oL, op, oL, op, oL,

or

ch :[ah + Ay %, + A, % + A, %, + A OgsJépl
oL, \op o, P, P ap, ) oL,

+( oh + Ay 99, + A 99, + A, 9. + s ags]apz + A,
op, op, op, op, op, ) oL,

or
e o,

oL, op, oL, op,
or

oh _a(A) o, (A P,
oL, op, oL, op, oL,

0

Since o) _ oand om) _ 0 at the optimal point, we have
P, P,

6_h = ;j(;

oL,

P,

o
——(+ 2,00 + 4,05 + 4,0, + A:95) =+ +——(h+ 4,9, + 4,0; + 4,0, ”595)5T”°

0

A21



Derivation of A,
Using the chain rule, we take the partial derivative of h with respect to L, and obtain:

oh  ¢h 6p1 oh op,

A22

oL, ap1 oL, 6p2 oL,

Using the chain rule and equation (A5) we obtain:

agS apl + agS ap2 _1=0; A23

op, oL, 0op, oL,

Multiplying (A23) above by 4,, we get:

ﬂ, ags 8pl 693 apZ _ﬂ“s =0 A24
op, oL, 8p2 oL,

Similarly, we obtain the following from A2, A6, and A7:

a9, op, n a9, P, ~0 A25

op, oL; op, oL,

ﬂvo 690 apl +ﬂ“0 690 ap2 =0 A26
op, oL, op, oL,

894 apl +ag4 apz =0 A27

op, oL, Ip, oL,

14 ag4 6p1 _'_14 ag4 6p2 :O A28
op, oL, op, oL,

995 op, + 995 0P, -0 A29

op, oL,  op, oL,

ﬂ ags apl ﬂ ags 8p2 :O A30
op, oL, ° op, oL,

Adding (A24), A(26), A(28), and A(30) to A(22) yields:

oh _oh dp,  oh b, 00000, 2000, 205 0B, 00y D,
oL, ap, oL, op, oL, ep oL, Tep, oL, ep, oL, fop, oL,
/1 ag4 apl +/1 ag4 6p2 +/1 agS apl +/1 ags ap2

4 4 5 5 A31
op, 0oL, p, L, op, 0L, op, oL,




or

= + A,
oL, ol

apl apl apl apl apl

+(6h o1 o, W5, W, 695]6p2 2
ap, 0p, P, P, 3p,)o

oh ( oh %, + A, % + 2, %, + A 695) Py

or

oh o P, 0 x
a_Lsza—pl(h+/1og0 + 2305 + 4,0, +ﬂsg5)i+£(h+ﬂogo + 230, + 4,9, +/1595)£—/13

or

on _a(a) op, (A b,
6L3 5p1 al—s apz 8'.3

3

Since o) _ oand o) _ 0 at the optimal point, we have
op, p,
o __x A32

a,
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