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I do think these are two very good papers, and it’s my pleasure to have a chance 

to discuss both of them. The common theme of these papers is projecting mortality and 

estimating confidence intervals around mortality projections. 

 

Projecting mortality at older ages is a very difficult task. First of all, it’s difficult 

to measure the current mortality at old ages because data is often sparse or even outright 

lacking and the data that exists is often of poor quality, so even knowing what the current 

mortality rates are can be very difficult at the older ages. It’s even more difficult to 

estimate the trends in older age mortality because you’re not certain about what it is 

currently or what it was in the past. Furthermore, if you are using population life tables or 

industry mortality tables for your history of past mortality rates, the tabular rates are often 

formulaic extrapolations of younger age data. They may not be based on actual mortality 

experience at the older ages at all. So projecting future rates of mortality at older ages is a 

difficult task to begin with, and both of these papers have taken on the challenge, not only 

of estimating the projected mortality rates, but of estimating confidence intervals around 

those projected rates. This is quite an ambitious task in both parts, and they’ve done a 

good job of it. 

 

Both papers generally agree that there are seven easy steps to getting confidence 

intervals around your future projections of mortality rates. You’ve got to find a data 

source, choose a data series to model, and choose a model form. Then you’ve got to 

estimate your parameters and your error term, and from that model you can stochastically 

simulate however many possible future series values you want. Depending on the type of 

values that you choose to model, you may need to calculate the qx values from the values 

you have stochastically simulated. Then you rank them and get your desired confidence 

interval. So it sounds simple, but it’s not an easy task. 
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The papers have taken a somewhat different approach in how they execute these 

seven steps. Both papers use the Human Mortality Database as their data source, but they 

take different slices of it. We heard comments in a previous session at this conference 

about how perhaps some of the higher age data in the Human Mortality Database might 

be overly smooth, but that’s not really a problem for either of these papers. 

 

The change in the discount sequence ratio is the quantity that is projected by 

Wang and Yue. This quantity is the main focus of the paper, and they take a lot of care to 

establish that it is, in fact, worthy of projection. There are several different versions of the 

discount sequence ratio they refer to. The one they ultimately project is the discount 

sequence ratio of the number of survivors from the life table, using quinquennial ages, 

i.e., ( lx / lx+5 ) / ( lx+5 / lx+10 ) 

 

Li and Chan project the logit or log-odds of qx, i.e. ln ( qx / ( 1-qx ) ). That’s not 

the main focus of the paper, and their main point about simultaneous prediction intervals 

could have been made regardless of the underlying model used in the projection. 

 

One of the things that’s different about these papers is the type of model that is 

estimated and projected. Wang and Yue are using a Brownian motion stochastic 

differential equation. They show that the discount sequence ratio has a certain mean 

reversion characteristic and model the change in the discount sequence ratio as the sum of 

a mean reversion term and a diffusion term. The model is parsimonious, with only two 

parameters to be estimated from the data. They use this model to simulate trajectories of 

values of the discount sequence ratio and then estimate point-wise confidence intervals 

from these simulations. As Li and Chan point out, the use of point-wise confidence 

intervals for these simulated values is standard practice. They generate stochastic 

simulations for the same historical time period as the data from which they fit the model 

and then present the estimated confidence intervals around the past experience. 
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Li and Chan model mortality rates using the Cairns-Blake-Dowd method with 

cohort effect, which has three time-dependent coefficients, plus the cohort coefficient. 

The three time-dependent coefficients are the ones that actually get modeled as random 

walk with drift. They use this model to stochastically simulate future trajectories of 

mortality rates, and then present the results of the simulation as mortality fan charts. The 

fan charts help you visually see how the uncertainty of the mortality estimate increases 

over time as you project into the future. 

 

 Wang and Yue take a great deal of care with their model. I particularly like the 

fact that they demonstrated graphically in the paper the finding that there’s actually white 

noise when you get down to this change in the discount sequence. Of course, what they 

demonstrate in the paper is the white noise of the discount sequence ratio of life 

expectancy, not of survivors, which is the one they model. Still, it makes a good visual 

impression in the paper to show that, in fact, the discount sequence ratio is a good 

candidate for a projection tool. They demonstrate historical values of a quantity, the 

discount sequence ratio, and this history appears to be white noise. So if we model this 

quantity, we should have a good estimate of the error term. Then if we project it 

assuming Brownian motion in the future, these projections will have a solid foundation. 

 

 Wang and Yue discuss the regularity condition at length, but it does not appear to 

be necessary for showing that the discount sequence ratio is a good projection tool. The 

regularity condition is actually relevant to a separate issue that was addressed in the paper 

about missing values. If some values are missing from your historical data, you can 

actually use the regularity property of the discount sequence and start filling in those 

missing values. This makes it very valuable. I did note that the discount sequences for life 

expectancy and for lx values were the ones that displayed the regularity conditions. Some 

of the other ones that they showed, like the number of deaths, actually didn’t seem to 

satisfy the regularity condition. The discount sequence for the number of deaths 

approached the regularity condition, but it didn’t actually display the property 
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historically. That ultimately is not important, since they chose to project the discount 

sequence ratio for lx values. 

 

 For Li and Chan, the main point is not about the Cairns-Blake-Dowd model or the 

estimate of future mortality rates. The main point is about effectively communicating the 

uncertainty in future projections of mortality. I certainly like the fact that their method of 

simultaneous prediction intervals results in wider confidence intervals, because that just 

makes more sense to me. I get very nervous about narrow confidence intervals on future 

projections because I just don’t believe them. I don’t think we know that much about it. 

 

 The envelope concept, which is used in the Chebyshev bands method and 

describes how you would contain a subset of future samples, is very useful. One thing I 

particularly liked about the Chebyshev bands method is that it provides a metric on the 

entire projection, so that you can actually rank the projections as unified entities. The 

metric is the maximum difference from the mean in terms of number of standard 

deviations over the entire projection period, so the ranking is based on whichever point 

on that particular trajectory is farthest from the mean in a relative sense. The Chebyshev 

method uses this ranking to determine which simulated projections are in the confidence 

interval to be estimated, and which are not. Because of this, you can always have exactly 

the right number of simulations in your estimated confidence interval. For example, if 

you have 10,000 simulations you can pick exactly 9,500 of them to be in your 95 percent 

confidence interval. The adjusted intervals method gives you a smoother result than the 

Chebyshev method, but because at each step you’re going to add one point on each side 

of the previously proposed boundary for the confidence interval, you may end up with 

more than 9,500 out of 10,000 simulations in your 95 percent confidence interval. You 

don’t necessarily add one simulation at a time, because it’s not a ranking that goes one by 

one. 

 
  



 

5 

 In the introduction to the paper, Li and Chan mentioned that their method handles 

parameter risk. I didn’t actually see that in the paper, and maybe it’s not there. It would 

be a valuable addition, and I would encourage the authors to keep pursuing that. 

 

 One general point I would like to make is that any estimated confidence interval 

based on a stochastic simulation is completely determined by the model selected for the 

simulation. The simulations will estimate that confidence interval based on what the 

model is predicting, and the error term drives the entire dispersion of results. Li and Chan 

use a matrix C that’s multiplied by a three-dimensional standard normal vector, and that’s 

where all of the variation in the future projections is actually coming from. If you use a 

different estimate for matrix C, you get a different width of your confidence intervals. For 

Wang and Yue, the diffusion term of the Brownian motion drives how much variability 

there is. So when you are trying to estimate a confidence interval using stochastic 

simulation, you really have to understand how and why you got your error term, and what 

it means for your simulated projections. 

 

 Finally, I want to highlight the point Li and Chan make about the difference 

between the point-wise confidence interval versus the simultaneous confidence interval 

and raise the question about when do you actually need the simultaneous interval. As I 

said earlier, I like the simultaneous interval because it gives you a wider confidence 

interval, but it is important to consider what uncertainty you are trying to communicate. 

One of the questions that came up at an earlier session today was how many people in the 

United Kingdom are going to be at least age 100 in 50 years. That’s actually a point-wise 

question, so you want a point-wise confidence interval around that particular answer. But 

for most of the types of longevity protection devices that are being contemplated, such as 

longevity swaps, you actually do need the simultaneous interval because you’ll trigger a 

claim event if future mortality falls outside of the defined band at any point along the 

way, not just at a particular point in time. 
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 I do want to just congratulate the authors of these papers. I think they’re excellent 

papers and a great contribution to this conference, so thank you.  


