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Abstract

Over the last century, the assumption usually made was that causes of death are
independent, although it is well-known that dependencies exist. Recent develop-
ments in econometrics allow, through Vector Error Correction Models (VECM), to
model multivariate dynamic systems including time dependency between economic
variables. Common trends that exist between the variables may then be highlighted,
the relation between these variables being represented by a long-run equilibrium
relationship. In this work, VECM are developed for causes-of-death mortality. We
analyze the five main causes of death across ten major countries representing a di-
versity of developed economies. The World Health Organization website provides
cause-of-death information over about the last 60 years. Our analysis reveals that
long-run equilibrium relationships exist between the five main causes of death, im-
proving our understanding of the nature of dependence between these competing
risks over recent years. It also highlights that countries had usually different past
experience in regards to cause-of-death mortality trends and thus, applying results
from one country to another may be misleading.
Keywords: Causes of death, mortality trends, VECM, dependence, common
trends
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1 INTRODUCTION

Models for trends in mortality rates for different ages and sexes as well as for different

countries are often based on the assumption that past trends in historical data will

continue in the future. Past mortality trends and variability reflect many factors and

these include changes in the causes of death. These causes have differing age patterns

and have shown different trends over recent years. At the same time, systematic changes

in causes of death have often been shown or assumed common across the developing

economies. Tuljapurkar et al. [2000] show how mortality declines have had common

trends in the G7 countries although there is evidence of variability in those trends.

Booth et al. [2006] also demonstrate common improvement trends based on the Lee-

Carter model and variants of the model. Wilmoth [1995] shows how taking into account

causes of death can influence projected trends and effectively highlights how cause-of-

death trends are hidden in aggregate data.

Dependence between competing risks is important in constructing aggregate mor-

tality rates. However, the relations that exist between the causes of death are not well

understood. Usually an assumption is made that causes of death are independent. Cause

elimination models as well as cause-delay models developed by Manton et al. [1980] and

Jay Olshansky [1987] are two well-known examples. The independence assumption is also

frequently implicit in cause-specific mortality forecasts, as mortality is usually projected

for each cause independently and aggregated in the end to produce total mortality, see

e.g. Tabeau et al. [1999], McNown and Rogers [1992] and Caselli et al. [2006].

Vector AutoRegressions (VAR) as well as Vector Error Correction Models (VECM)

are tools developed in econometrics that give valuable information on the relations bind-

ing a set of variables, typically a set of economic variables. Indeed, beside including time

dependency between the variables of interest and allowing for stochastic trends, these

models use long-run equilibrium relationships through what is know as cointegration.

These long-run equilibriums represent steady-states that exist between the variables un-

der study. As a result, the application of these models to cause-of-death mortality rates

will provide valuable information on their dependence and allow a better understanding
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of the trends in cause-of-death mortality rates across countries.

In this paper, we estimate the common trends and relationships between the five

main causes of death in ten countries. The paper shows that although some countries

have similar trends in cause-of-death mortality rates, there are differences in groups of

countries and in the form of the long-run common stochastic trends. Thus, it highlights

that countries had usually different past experience in regards to cause-of-death mortality

trends and that applying results from one country to another may be misleading. The

resulting improved understanding of the relations existing between the causes of death

can further be used in competing risk models and in constructing aggregate mortality

rate trends. This will better inform estimates of future mortality trends and variability.

The paper begins with a brief description of VAR and VECM in Section 2. Section 3

summarizes the data source and cause-of-death mortality used to estimate the models.

Results from the model fitting are then discussed in Section 4. Section 5 highlights

implications for modeling mortality trends and concludes.

2 VAR AND VECM MODELS

Stationary variables, such as a vector of stationary cause-specific mortality rates,

can be effectively modeled through Vector AutoRegressive (VAR) models. A pth-order

vector autoregression, denoted as VAR(p), based on p lags of the variables in the model

is written as

yt = c + dt+ Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + εt, (1)

where the n variables at time t are denoted by the (n× 1) vector yt, c is a (n× 1) vector

of constants, d is a (n× 1) vector of trends and Φi is a (n× n) matrix of autoregressive

coefficients for i = 1, 2, . . . , p. The (n× 1) vector εt is a vector of white noise terms, with

E(εt) = 0, (2)

E(εtεl) =


Ω for t = l

0 for t 6= l,
(3)
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where Ω is a symmetric positive definite matrix. Hamilton [1994] and Lütkepohl [2005]

are comprehensive references on these models.

However, variables are often non-stationary, also called integrated. The non-stationarity

can be removed by differencing the variables if the process is integrated of order one,

denoted I(1). A VAR(p) can then be fitted to the differenced data. Nonetheless, non-

stationary variables may have common stochastic trends. In such a case, the variables

move together, influenced by the common trends. There might then exist a linear com-

bination of the variables, such that the resulting relation is stationary, even if each

variable is not. This stationary relation represents a long-run equilibrium relationship

called cointegration. By differencing the data, any information about long-run trends

present in the levels of the data is removed, such as a potential cointegrating relation.

Therefore, fitting a VAR to the differenced data is not optimal. However, models that

include cointegrating relations exist. They are called Vector Error Correction Models

(VECM).

Formally, as described in Lütkepohl [2005] and following the notation used in Gaille

and Sherris [2011], if the n variables in the vector yt are all I(1) then, if they are

cointegrated, a long-run relationship given by

β1y1t + β2y2t + · · ·+ βnynt = 0

will hold on average in the long-run. Allowing for deviations from the long-run equilib-

rium relationship this becomes

β1y1t + β2y2t + · · ·+ βnynt = zt, (4)

where zt is a stochastic variable representing that deviation. The variables are cointe-

grated if zt is stationary, that is a long-run equilibrium exists.

The variables under study may be linked by more than one cointegrating relation,

each relation being linearly independent from the others. The cointegrating relations are

then represented in a matrix form, β, each column of that matrix being a cointegrating
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relation, as in

β′yt = zt, (5)

β = (β1 β2 . . . βr),

=



β11 β12 · · · β1r

β21 β22 · · · β2r
...

...

βn1 βn2 · · · βnr


, (6)

yt = (y1t y2t . . . ynt)
′,

where zt is now a vector of r stochastic variables. The vector β′yt is stationary and

contains the r linearly independent cointegrating relations of the n variables in the pro-

cess.1 The columns of β are said to form a basis of the space of cointegration (Hamilton

[1994]) when any other cointegrating relation can be expressed as a linear combination

of (β1 β2 . . . βr). There are then exactly r cointegrating relations among the variables

under study.

The cointegrating relations are incorporated in VAR modeling using an alternative

VAR(p) representation (see, for example, Hamilton [1994] for a proof)

∇yt = c + ξ1∇yt−1 + ξ2∇yt−2 + · · ·+ ξp−1∇yt−p+1 + Πyt−1 + εt, (7)

where

Π = −(In −Φ1 − · · · −Φp);

= αβ′;

= matrix of rank r;

α = a (n× r) loading matrix ;

β = a (n× r) matrix containing the r vectors

forming a basis of the space of cointegration;
1Only variables integrated of order one are considered, and thus cointegrating relations between these

variables are stationary. For a more general description, see Hamilton [1994] and Lütkepohl [2005].

6



ξi = −(Φi+1 + · · ·+ Φp) for i = 1, . . . , p− 1.

Equation (7) is the Vector Error Correction Model of the cointegrated system. Since

the first difference of an I(1) process and the cointegrating relations are stationary,

each element of Equation (7) is stationary. The loading matrix α measures the impacts

cointegrating relations have on the variables under study. For example, the element

αij measures the effect of the cointegrating relation j (j = 1, . . . , r) on the variable i

(i = 1, . . . , n).

In order to estimate the cointegrating relations and the other parameters in Equation

(7), we use Johansen’s approach, which is the standard procedure when the number of

cointegrating relations in the VECM is unknown. The steps to follow to estimate a

VECM are described in Gaille and Sherris [2011]. In summary (Figure (1)):

Figure 1: Steps to follow in a VECM analysis

This is an extension of the procedure described in Gaille and Sherris [2011].
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1. The lag order of the VAR is selected through Akaike’s Information Criteria (AIC),

Hannan-Quinn Criterion (HQ), Schwarz Criterion (SC), Final Prediction Error

(FPE).

2. Stationarity of the variables is considered through several unit root tests: the

Kwiatkowski-Phillips-Schmidt-Shin test (KPSS), the Augmented Dickey-Fuller test

(ADF), the Phillips-Perron test (PP) or the Elliot-Rothenberg-Stock test (ERS).

3. Fitting a VAR(p) is appropriate if all the variables are stationary. A stationary

variable is also denoted I(0). However, the trace test and the maximum-eigenvalue

test of the Johansen’s approach are used in order to find the number of cointegrating

relations when some of the variables are I(1). Besides, as mentioned in Gaille and

Sherris [2013], the cointegrating relations may be stationary around a constant or

a trend. This can also be tested through the Johansen’s approach, while testing

for the number of cointegrating relations.

4. A VAR(p− 1) on the first difference is estimated when the variables are I(1) and

not cointegrated. Otherwise, the appropriate VECM should be found.

5. The residuals of the model are tested for normality and autocorrelations.

3 DATA

Central death rates are determined as the number of persons for each age group, sex,

and country who die in a particular year of a specific cause, divided by the mid-year

population. Data were obtained from the Mortality Database (World Health Organi-

zation [2012]) administered by the World Health Organization (WHO) which contains

demographic information, including the number of deaths by cause of death, for various

countries over the last 50 or 60 years. The data are generally divided into five-year

age-groups.

The five developed countries with the highest population are studied along with five

other countries selected such that a diversity in population size is also represented in our

analysis. Although Germany is the third developed country with the highest population,
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it is not included in our study since the population and death numbers are, before 1990,

split between the Former Democratic Republic, the Former Federal Republic and West

Berlin and since the Former Democratic Republic has no available data for the period

preceding 1969. Besides, developing countries are not included, their data being less

reliable. The ten countries studied are, by decreasing population size, USA (1950–2007),

Japan (1950–2009), France (1952–2008), Italy (1951–2003), England and Wales (1950–

2009), Australia (1950–2004), Sweden (1951–2010), Switzerland (1951–2007), Singapore

(1955–2009) and Norway (1951–2009).

The International Classification of Diseases (ICD) is an internationally recognized

classification of the causes of death aiming at ensuring consistency between countries

(Table (1a)). Under the ICD, the underlying cause of death is specified as the disease

or injury which initiated the train of morbid events leading directly to death, or the

circumstances of the accident or violence which produced the fatal injury. We consider

the five main ICD causes, which are: diseases of the circulatory system, cancer, diseases

of the respiratory system, external causes, and infectious and parasitic diseases. Gaille

and Sherris [2013] noticed that these major causes accounted for more than 80% of deaths

in recent years, and made up approximately 60% – 70% of deaths 50 years ago.

The same database as in Gaille and Sherris [2011, 2013] is used in this paper. There-

fore, in order to analyze data consistently over time and across countries, some adjust-

ments are made, such as distributing the number of deaths of unknown age proportionally

across the age range, grouping ages 85 and above as well as ages one to four, and taking

into account the changes of classification over time. Since the ICD changed three times

between 1950 and 2010, from ICD-7 to ICD-10 (Table (1b) presents the dates at which

the countries adopted new classifications), the raw data are not directly comparable over

time. Figure 2 introduces death rates in the USA for different causes of death. The

ICD change in 1968 highly impacts the diseases of the circulatory system, while the

ICD change in 1999 clearly influences the infectious & parasitic diseases, as noticed with

the upward jumps. To get data that are comparable over time, comparability ratios

are used as described in Gaille and Sherris [2011]. Discontinuities in the death rates at

the dates introduced in Table (1b) are then removed using these comparability ratios.
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Table 1: International Classification of Diseases

(a) Coding system

(b) Adoption of new classifications
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(a) Circulatory system (b) Cancer

(c) Respiratory system (d) External causes

(e) Infectious & parasitic diseases

Figure 2: Observed cause-specific log-death rates, males in USA
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(a) Circulatory system (b) Cancer

(c) Respiratory system (d) External causes

(e) Infectious & parasitic diseases

Figure 3: Cause-specific log-death rates smoothed by the comparability ratios, males in
USA
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Figure 3 presents the resulting graphs for the USA. The two jumps noticed in Figure 2

are removed. The analysis in this paper is applied to these adjusted death rates.

Finally, trends by cause of death are examined using an age-standardized country-

specific central death rate. To allow for changes in the age structure of the population,

the aggregate country-specific death rate is denoted by m∗c,t,d,s, where

m∗c,t,d,s = d∗c,t,d,s/lc,LYc,s,

d∗c,t,d,s =
∑
x

(mx,c,t,d,s × lx,c,LYc,s), (8)

and

mx,c,t,d,s = central death rate of country c, at time t, for cause of death d,

and for a person of sex s, and age x;

lx,c,LYc,s = mid-year population of sex s, age x, in country c and year LYc;

lc,LYc,s =
∑
x

(lx,c,LYc,s);

= mid-year population of sex s, in country c and year LYc;

LYc = last year under observation for country c.

The population of the last year under observation is used as a base. Total number of

deaths in a particular year t is determined as if the mid-year population of that year

was the same as the population of the last year of the data period. Therefore, m∗c,t,d,s

refers to the country cause-specific death rate in year t, assuming that the population

is constant over the complete period under observation and fixed at the level of the last

observed year.

4 LONG-RUN TRENDS FOR CAUSES OF DEATH

The VECM is estimated across the ten major countries for males and females, using

Johansen’s procedure. Long-run equilibrium relationships are estimated between the

five main causes of death. The analysis is applied to the logarithm of m∗c,t,d,s. Since 20

different models are estimated (ten countries, two genders), more than 300 tests were
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performed. Therefore, only summaries of most important results are presented for ease

of presentation and to highlight the key findings of the paper. Details are available from

the authors upon request.

4.1 Lag Order Selection

Out of the four tests performed, a lag order of one or two is indicated as optimal. A

VAR(1) is the most suitable model for the aggregate standardized log-death rates for

causes of death in each of the ten analyzed countries, except for females in France and

Switzerland as well as males in Australia, see Table 2.

Table 2: Number of past values to take into consideration in a VECM analysis

4.2 Unit Root Tests

KPSS, ADF, PP and ERS tests are performed on the data. A cause of death is said

stationary when at least three out of the four tests accept it at a five percent significance

level. When some doubts still remain, several models are tested and the one with non-

autocorrelated and normally distributed residuals (model validation criteria) is chosen.

Table (3) summarizes the causes of death that are stationary according to these tests.
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Table 3: Stationarity of the five main causes of death

UR = Unit root, that is a non-stationary variable
S = Stationary variable
I&P = Infectious and parasitic diseases.
This table describes the stationarity of the log-death rate logm∗

c,t,d,s.
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Across the countries, most of the cause-of-death log-death rates show evidence of non-

stationarity and have stochastic trends. The major exceptions are the diseases of the

respiratory system. In the United States, Japan, France, England and Wales (males),

Australia, Sweden and Switzerland (females), the five main causes of death are non-

stationary. In England and Wales (females), Italy, Switzerland (males) and Norway,

log-death rate for diseases of the respiratory system is the only rate that is stationary.

Singapore is different with log-death rate for infectious and parasitic diseases as the only

stationary cause of death. This is expected to express the climate of this country, as

Singapore is the only country with a tropical weather.

4.3 Long-Run Equilibrium Relationships

The number of estimated cointegrating relations is summarized in Table (4), based on the

trace and maximum-eigenvalue tests of the Johansen’s procedure. These two tests assess

the number of long-run equilibrium relationships among the causes of death. Several

model assumptions are tested and the most efficient one according to the model validation

criteria is shown.

Table 4: Number of cointegrating relations among the five main causes of death
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In general, there is at least one cointegrating relationship between the causes of death

in each country showing that these rates have changed with common stochastic trends.

These long-run equilibrium relationships determine how changes in causes of death move

relative to each other.

Besides, tests performed through the Johansen’s procedure indicate that a trend

should be included in these cointegrating relations, except for females in Switzerland

and Norway. Thus, the long-run equilibrium relationship is stationary around a trend

meaning that the cause-of-death death-rates are either getting closer to each other over

time or moving apart.

4.4 Fitted VECM for Causes of Death

Since the main interest in this work is to get a better understanding of the dependence

that exists between causes of death, only cointegrating relations are presented and dis-

cussed. Indeed, these relations provide insights into the long-run relationships that exist

between the variables of interest. However, details of each VECM are available from the

authors upon request.

Table 5 describes the cointegrating relations found for the ten countries and both

genders. These relationships reflect the historical data and the relative past changes in

cause-specific mortality. It indicates that even if death rates were stochastically changing

over time, the relations existing between these rates were constant. For example, for

males in United States, decreases (increases) in the log-mortality rate of the circulatory

system are associated with either increases (decreases) in log-death rate for cancer, or

decreases (increases) in log-death rate for respiratory diseases, external causes of death

or the infectious and parasitic diseases, or a combination of these impacts, so that the

overall change is stationary. Thus, it provides a better understanding of the dependence

existing between the causes of death.

Some similarities are found in the cointegrating relations across countries. For exam-

ple, males in Sweden, in England and Wales as well as females in Sweden show similar

relative changes. The five causes of death have a coefficient with the same sign. In these

three cases, a decrease in mortality due to cancer was associated, in the past, with an
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Table 5: Cointegrating relations between the five main causes of death

I&P = Infectious and parasitic diseases.
These results show, for example, that the VECM for males in the United States has an estimated
long-run equilibrium relationship given by

10.69× CircSystt + 5.60× Cancert − 8.89×RespSystt − 7.68× ExtCausest − 1.27× I&Pt = zt,

where zt is a stationary variable.

18



increase in log-death rates of either or a combination of the four remaining causes.

However, these similarities are rare. Few countries have a similar cointegrating re-

lation and thus, significant variations in trends between these cause-of-death rates are

found across the ten countries. Concretely, it means that a decrease in mortality due to

cancer, for example, will have different impacts on the other causes of death across coun-

tries, if past observed relations are assumed to hold in future. It can then be misleading

to use the experience of an apparently similar country in order to model the mortality

of another country of interest.

4.5 Model Validation

The residuals of the model are tested for normality with three tests (for details, see

Lütkepohl [2005]): First a test based on the skewness of a normal distribution; second

a test based on the kurtosis of a normal distribution; third, a combination of the first

two tests, labeled both in Tables (6) and (7). Any remaining autocorrelations among

the residuals are tested with the Portmanteau statistic adjusted for small samples (as

in Lütkepohl [2005]). The null hypothesis is that there is no autocorrelation among the

residuals up to 15 and 25 lags. Tables (6) and (7) summarize the significance of the tests

for males and females respectively.

The null hypothesis of no-autocorrelation up to 15 or 25 lags as well as the null

hypothesis of normality are, in most cases, accepted at a five percent significance level.

For males in Italy as well as females in Singapore and England and Wales, the null

hypothesis of normality is rejected. Despite this, the estimated VECM capture the trends

in the cause-of-death data and provide a good fit based on the model assumptions.

5 DISCUSSION AND CONCLUSION

This paper presents the first results of an international comparison of potential long-

run equilibrium relations between cause-specific mortality rates. By considering aggre-

gate cause-of-death mortality rates and using models with long-run common stochastic

trends, it is possible to estimate equilibrium relationships arising from different causes of

19



Table 6: Tests on residuals of the fitted VECM, males

* The null hypothesis is accepted at a one percent significance level.
** The null hypothesis is accepted at a 2.5% significance level.
*** The null hypothesis is accepted at a five percent significance level.
– The null hypothesis is rejected.

20



Table 7: Tests on residuals of the fitted VECM, females

* The null hypothesis is accepted at a one percent significance level.
** The null hypothesis is accepted at a 2.5% significance level.
*** The null hypothesis is accepted at a five percent significance level.
– The null hypothesis is rejected.
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death. Comparing these trends across countries allows to identify countries with similar

trends. This study uses a multivariate dynamic system to model log-death rates for the

five main causes of death across ten countries. VECM are found to fit accurately the his-

torical data and the dynamics of cause-specific death rates. Two important conclusions

are drawn from these results.

First, long-run equilibrium relationships exist between the mortality rates for the five

main causes of death in every country. This confirms the nature of dependence between

these competing risks. The often made assumption of independence between mortality

rates for causes of death is shown not to hold as these rates have common stochastic

trends at a country level. Long-run equilibrium relationships should not be disregarded

in any analysis considering the causes of death and should be included in new forecasting

mortality models.

Second, the study demonstrates that countries tend to have different past experience,

even if some groups of countries have a similar one. Causes of death have shown differing

patterns of improvement and these patterns tend to vary across countries. If past trends

are believed to be maintained in the future, a shock in some cause-specific mortality

rates, e.g. a cure for cancer, will not have the same impact across countries. Thus, using

the experience of some other and apparently similar countries in order to improve the

model of some country-cause-specific mortality rates might be dangerous and misleading.

This paper presents new tools (cointegration and VECM) for modeling the depen-

dence between causes of death and thus, offers new perspectives in such analyses. Pre-

liminary results were presented but there is a wide range of potential additional de-

velopments. For example, this paper only analyses age-standardized death rates, since

applying a VECM to age and cause-specific death rates would result in a model with

far too many parameters. Further studies are needed in order to find the optimal way

to model age and cause-specific mortality in a single model. Taking these new relations

into account in the modeling and forecasting process will greatly improve the analysis

of cause-specific mortality rates, as recently demonstrated with age-standardized death

rates for Swiss females by Gaille and Sherris [2013].
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