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Abstract	

	

People	naturally	 observe	 risk	 as	 the	 range	of	 experienced	 gains	 and	
losses	 represented	 in	 statistical	 terms	 by	 standard	 deviation.	
Statistical	 techniques	are	used	 to	develop	values	 for	extreme	 tails	of	
the	distribution	of	gains	and	losses.	These	processes	are	essentially	an	
extrapolation	 from	 the	 “known”	 risk	 of	 volatility	 near	 the	 mean	 to	
“unknown”	risk	of	extreme	losses.	This	paper	will	propose	a	tail	risk	
metric	 (the	 coefficient	 of	 riskiness)	 that	 can	 be	 used	 to	 enhance	
discussion	between	model	builders	and	model	users	about	the	fatness	
of	the	tails	in	risk	models.		

	

Risk	models	all	start	with	observations.	Modelers	look	at	the	observations	and	the	

shape	of	a	plot	of	the	observations.	From	that	shape,	the	modelers	choose	a	

mathematical	formula	to	represent	the	risk	driver	(such	as	interest	rates	or	stock	

market	returns)	or	for	the	loss	severity	itself.	Those	formulas	are	known	as	

probability	distribution	functions	(PDF).	

	

The	most	famous	and	most	commonly	used	of	these	functions	is	known	as	the	

“normal”	curve.	Mathematicians	(sometimes	called	quants	or	rocket	scientists)	

particularly	favored	the	use	of	the	normal	PDF	because	its	mathematical	

characteristics	made	it	particularly	easy	to	manipulate,	making	rapid	analysis	of	risk	

functions	based	upon	the	normal	PDF	possible.1	

																																																								
1	Indeed,	the	use	of	the	normal	PDF	in	finance	can	be	traced	to	the	rediscovered	1900	thesis	of	Louis	
Bachelier,	Theory	of	Speculation,	trans.	Mark	Davis	and	Alison	Etheridge	(Princeton:	Princeton	
University	Press,	2006).	Bachelier	sets	a	standard	followed	by	many	of	presenting	the	normal	PDF	as	
the	basis	for	statistical	modeling	of	financial	risk.	Bachelier	may	have	also	been	the	first	to	caution	
that	“The	calculus	of	probabilities	can	no	doubt	never	apply	to	movements	of	stock	exchange	
quotations.”	
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In	the	2008	global	financial	crisis,	we	found	that	many	financial	market	risk	models	

based	on	the	normal	PDF	drastically	underestimated	the	likelihood	of	losses	which	

were	much,	much	worse	than	the	average.		

	

Unfortunately,	for	many	people,	expectations	of	extreme	losses	learned	from	

business	courses,	media	and,	to	some	extent,	risk	models	are	drawn	from	the	very	

same	characteristics	as	the	normal	PDF.		

	

The	language	of	the	normal	PDF	is	our	basic	language	of	risk.	The	normal	PDF	is	

defined	completely	by	just	two	terms—mean	and	standard	deviation.	We	tend	to	

expect	the	mean	and	the	standard	deviation	to	tell	us	“all	about”	any	new	risk,	

without	realizing	we	are	thereby	assuming	the	risk	is	normal.		

	

The	normal	PDF	says	we	should	expect	about	two‐thirds	of	our	observations	to	fall	

within	one	standard	deviation	of	the	mean	and	over	90	percent	of	the	observations	

within	two	standard	deviations	of	the	mean.	It	also	says	it	is	extremely	unlikely	to	

have	any	observations	beyond	three	standard	deviations	from	the	mean.	In	fact,	

observations	should	fall	within	three	standard	deviations	99.9	percent	of	the	time	

for	the	normal	PDF.2	

	

And	that	is	how	we	were	able	to	confirm	the	normal	PDF	underestimated	the	

likelihood	of	large	deviations	from	the	mean.	David	Viniar,	Goldman	Sachs’	chief	

financial	officer,	famously	observed	during	the	financial	crisis,	“We	are	seeing	things	

that	were	25	standard	deviation	moves,	several	days	in	a	row,”3	which,	under	the	

normal	PDF,	was	highly	unlikely	to	happen	even	once	in	the	time	since	the	last	ice	

age	ended.		

	

																																																								
2	Of	course,	the	normal	PDF	actually	says	the	99.9th	percentile	observation	should	be	3.09	standard	
deviations	from	the	mean.		
3	Peter	Thal	Larsen,	“Goldman	Pays	the	Price	of	Being	Big,”	Financial	Times,	August	13,	2007.		
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The	idea	that	risk	fits	a	normal	curve	is	so	deeply	embedded	that	almost	all	

discussion	of	Viniar’s	25‐standard‐deviation	statement	was	in	the	form	of	

discussion	of	exactly	how	to	calculate	the	likelihood	of	a	25‐standard‐deviation	

move	under	the	normal	PDF,	instead	of	challenging	the	very	idea	that	the	normal	

PDF	might	not	be	appropriate.4		

	

Two	noted	exceptions	to	these	generalizations	are	Benoit	Mandelbrot	and	Nassim	

Taleb.	Mandelbrot,	in	his	work	studying	price	movements	in	cotton	markets	in	the	

1960s,	suggests	there	are	seven	states	of	randomness,	only	the	first	of	which	is	

properly	modeled	by	a	normal	PDF.5	Taleb,	in	his	books,	actually	divides	the	world	

into	two	regimes—Mediocristan	and	Extremistan—where	the	normal	PDF	explains	

the	first	regime	and	a	Pareto	PDF	explains	the	second.6		

	

In	insurance	modeling	by	actuaries	and	catastrophe	modelers,	the	use	of	a	normal	

PDF	is	much	less	dominant.	Other	PDFs,	especially	the	Pareto	PDF,	allow	for	quite	

extreme	values	with	relatively	high	likelihood.	In	fact,	with	certain	calibrations,	the	

Pareto	PDF	allows	for	infinite	values	of	metrics	like	variance,	something	that	is	

possibly	even	more	unrealistic	than	the	normal	PDF’s	low	likelihood	for	extreme	

values.	Alternately,	some	modelers	who	see	the	need	for	higher	likelihood	of	

extreme	values	with	normal	PDF‐like	features	otherwise	have	used	combinations	of	

multiple	normal	PDFs	to	achieve	the	desired	“fat	tails.”7	Other	models	of	a	single	

category	of	risk	exposures	may	combine	two	or	more	different	PDFs.	For	example,	a	

model	of	a	property	insurance	line	of	an	insurer	may	consist	of	separate	models	of	

natural	catastrophe	losses,	losses	from	large	exposures	and	losses	from	small	and	

																																																								
4	For	example,	see	“How	Unlucky	is	25‐Sigma?”	by	Kevin	Dowd,	John	Cotter,	Chris	Humphrey	and	
Margaret	Woods.	
5	Benoit	B.	Mandelbrot,	“The	Variation	of	Certain	Speculative	Prices,”	Journal	of	Business	36.	no.	4	
(1963).		
6	Nassim	Nicholas	Taleb,	Fooled	by	Randomness:	The	Hidden	Role	of	Chance	in	the	Markets	and	in	Life	
(New	York:	Random	House,	2001);	The	Black	Swan:	The	Impact	of	the	Highly	Improbable	(New	York:	
Random	House,	2007);	and	Antifragile:	Things	That	Gain	From	Disorder	(New	York:	Random	House,	
2012).		
7	Mary	R.	Hardy,	“A	Regime‐Switching	Model	of	Long‐Term	Stock	Returns,”	North	American	Actuarial	
Journal	5,	no.	2	(2001).	
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moderate‐sized	exposures.	Each	of	these	submodels	is	often	based	upon	a	different	

PDF.		

	

Each	of	the	alternate	PDFs	has	different	characteristics	that	have	been	given	names	

by	statisticians	such	as	skewness	(which	quantifies	asymmetry)	and	kurtosis	(which	

quantifies	the	sharpness	of	the	distribution’s	peak).	The	accepted	wisdom	among	

modelers	is	that	for	someone	to	“understand”	a	model	of	risk,	they	must	walk	the	

path	of	the	modelers:	Follow	the	math	of	the	PDFs	and	definitely	understand	the	

nuances	of	skewness	and	kurtosis.		

	

Extreme	value	theory	(EVT)	is	an	explicit	but	highly	technical	approach	to	building	

statistical	models	that	are	not	focused	on	fitting	the	mean	or	the	observations	near	

to	the	mean.	EVT	focuses	on	using	specific	PDFs	that	are	inherently	fat	tailed.	The	

EVT	process	is	designed	to	be	driven	by	the	data	and	the	axioms	of	EVT	to	

analytically	determine	the	tails,	especially	the	values	beyond	the	observations.8		

	

There	is	a	strong	push	for	top	managers	and	even	board	members	to	become	active	

users	of	the	outcomes	of	risk	models	and	to	actually	participate	in	the	process	of	

validating	the	risk	model.	For	example,	the	risk	committee	charter	of	one	bank	says	

that	board	committee	will	oversee:	

		

Model	Risk,	by	reviewing	all	model‐related	policies	and	assessments	

of	the	most	significant	models,	in	each	case	annually,	and	reviewing	

model	development	and	validation	activities	periodically.9		

	

But	both	the	mathematical	approach	to	describing	the	PDFs	and	the	process‐based	

explanations	that	require	simply	following	the	modeler’s	thinking	fail	to	engender	

either	understanding	or	faith	in	the	model.	JPMorgan	Chase	&	Co.,	the	original	
																																																								
8	See	Paul	Embrechts,	Claudia	Klüppelberg,	and	Thomas	Mikosch,	Modelling	Extremal	Events	for	
Insurance	and	Finance	(New	York:	Springer,	1997).		
9	Santander	Consumer	USA	Holdings	Inc.,	“Board	Enterprise	Risk	Committee	Charter,”	effective	Dec.	
8,	2014.	
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proponent	of	the	value‐at‐risk	models	used	extensively	in	banks,	experienced	a	

major	loss	in	late	2011	and	early	2012	that	was	in	part	attributed	to	a	flawed	risk	

model	update.10	According	to	Esade	Business	School	professor	Pablo	Triana:	

	

The	perception	of	a	bank’s	risk	should	not	depend	on	the	technicalities	

of	a	mathematical	model	but	rather	on	commonsensical	analysis	of	

what	should	and	should	not	be	acceptable.11	

	

The	remainder	of	this	paper	will	present	an	alternate	approach	to	discussing	the	

nature	of	a	risk	model’s	prediction	of	the	likelihood	of	an	extreme	deviation.	This	

approach	will	not	require	extensive	mathematical	or	statistical	education	on	the	

part	of	the	user,	nor	will	it	require	much	in	the	way	of	new	vocabulary.	It	will	work	

from	where	most	people	stand	now	in	their	understanding	of	the	math	of	risk—with	

the	concepts	of	mean	and	standard	deviation.	This	approach	to	presenting	a	

measure	of	“fatness	of	tails”	does	not	replace	anything	currently	in	wide	use	for	

discussions	of	risk	models	with	nontechnical	users	of	risk	models.	It	could	be	a	

powerful	addition	to	the	discussion	of	risk	models	with	those	nontechnical	users	

and	may	lead	to	an	important	change	in	the	relationship	between	those	users	and	

modelers	by	providing	a	basis	for	communication	regarding	a	most	important	

aspect	of	the	models.		

	 	

																																																								
10	Christopher	Whittall,	“Value‐at‐Risk	Model	Masked	JP	Morgan	$2	bln	Loss,”	Reuters,	May	11,	2012.	
11	Tracy	Alloway,	“JPMorgan	Loss	Stokes	Risk	Model	Fears,”	Financial	Times,	May	13,	2012.		
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Extrapolating	the	Tails	of	the	Risk	Model	

	

The	statistical	approach	to	building	a	model	of	risk	involves	collecting	observations	

and	then	using	the	data	along	with	a	general	understanding	of	the	underlying	

phenomena	to	choose	a	PDF.	The	parameters	of	that	PDF	are	then	chosen	to	a	best	

fit	with	both	the	data	and	the	general	expectations	about	the	risk.		

	

This	process	is	often	explained	in	those	terms—fitting	one	of	several	common	PDFs	

to	the	data.	But	an	alternate	view	of	the	process	would	be	to	think	of	it	as	an	

extrapolation.	The	observed	values	generally	fall	near	to	the	mean.	Under	the	

normal	PDF,	we	would	expect	the	observations	to	fall	within	one	standard	deviation	

of	the	mean	about	two‐thirds	of	the	time	and	within	two	standard	deviations	almost	

98	percent	of	the	time.	When	modeling	annual	results,	it	is	fairly	unlikely	we	will	

have	even	one	observation	to	guide	the	“fit”	at	the	99th	percentile.		

	

So,	in	most	cases,	we	really	are	using	the	shape	of	the	PDF	to	extrapolate	to	get	a	

99th	percentile	or	99.5th	percentile	value.	But	our	method	of	describing	our	models	

presents	that	fact	in	a	fairly	obtuse	fashion.	Sometimes	model	documentation	

mentions	the	PDF	we	use	for	this	extrapolation.	Rarely	does	the	documentation	

discuss	why	the	PDF	was	chosen	and,	when	this	is	discussed,	it	is	almost	never	

mentioned	that	it	is	judgment	of	the	modeler	which	drives	the	exact	selection	of	the	

parameters	that	will	determine	the	extreme	values	via	the	extrapolation	process.		

	

After	the	2001	dot‐com	stock	market	crash,	many	modelers	of	stock	market	risk	

adopted	a	regime‐switching	model	as	a	technique	to	create	the	“fat	tails”	that	many	

realized	were	missing	from	stock	market	risk	models.12.		

	

But	how	fat	were	the	tails	in	these	regime‐switching	models?	Would	reporting	the	

skewness	and	kurtosis	of	the	resulting	model	help	with	understanding	of	the	model?	

																																																								
12	Mary	R.	Hardy,	“A	Regime‐Switching	Model	of	Long‐Term	Stock	Returns,”	North	American	Actuarial	
Journal	5,	no.	2	(2001).	
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Or	is	the	regime‐switching	equity	risk	model	now	a	black	box	that	can	only	be	

understood	by	other	modelers?	

	

Almost	every	business	decision‐maker	is	familiar	with	the	meaning	of	average	and	

standard	deviation	when	applied	to	business	statistics.	We	propose	that	those	

commonly	used	and	almost	universally	understood	terms	be	used	as	the	basis	for	a	

new	metric	of	“fatness	of	tails.”13		

	

We	use	the	idea	of	extrapolation	to	construct	for	this	new	proposed	measure	of	

fatness	of	tails.	The	central	idea	is	that	we	will	have	a	three‐point	description	of	our	

risk	model,	and	with	these	three	terms	we	can	describe	the	degree	to	which	we	can	

expect	a	risk	to	have	common	fluctuations	that	will	drive	variability	in	expected	

earnings	(mean	and	standard	deviation)	as	well	as	a	third	factor	that	indicates	the	

degree	to	which	this	risk	might	produce	extreme	losses	of	the	sort	we	generally	hold	

capital	for.		

	

Coefficient	of	Riskiness	

	

We	will	add	just	one	term	to	our	elementary	vocabulary	of	risk—the	coefficient	of	

riskiness	(CR).	This	value	will	be	the	third	term	in	describing	the	risk	model.	It	is	the	

indicator	of	the	fatness	of	the	tail	of	the	risk	model.	

	

CR	=	(V.999	−	ߤ)/ߪ	

	

Or,	in	English,	the	number	of	standard	deviations	the	99.9th	percentile	value	is	from	

the	mean.14		

	

																																																								
13	Many	analysts	rely	on	the	coefficient	of	variation	(CV)	for	comparing	riskiness	of	different	models.	
The	CV	is	a	good	measure	for	looking	at	earnings	volatility,	but	it	does	not	give	strong	indication	of	
the	fatness	of	the	tails.	Its	definition,	using	only	mean	and	standard	deviation,	also	supports	a	
presumption	of	the	normal	PDF.		
14	The	choice	of	99.9th	percentile	is	discussed	in	the	appendix	of	this	paper.		
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We	used	this	concept	above	when	we	said	observations	should	fall	within	three	

standard	deviations	99.9	percent	of	the	time	for	the	normal	PDF.	

	

The	CR	can	be	quickly	and	easily	calculated	for	almost	all	risk	models.	It	can	then	be	

used	to	communicate	the	way	the	risk	model	predicts	extreme	losses,	allowing	for	

actual	discussion	of	extreme	loss	expectations	with	nonmodelers.	We	use	the	mean	

and	standard	deviation	in	defining	the	CR	not	because	they	are	the	mathematically	

optimal	way	to	measure	extreme	value	tendency,	but	because	they	are	the	two	risk‐

modeling	terms	already	widely	known	to	business	leaders.		

	

Potentially,	the	CR	could	become	a	part	of	the	process	for	the	initial	construction	of	

risk	models,	taking	the	position	of	a	Baysean	prior15	in	the	common	situation	where	

there	are	no	observations	of	the	extreme	values.	And,	if	CR	has	been	established	as	a	

common	idea	with	nonmodelers,	they	could	have	a	voice	in	the	process	of	

determining	how	the	model	will	approach	that	part	of	the	risk‐modeling	puzzle.		

	

The	CR	value	will	not	be	a	reliable	indicator	for	models	where	the	standard	

deviation	is	not	reliable.	It	is	instructive	to	identify	the	characteristics	of	such	

models	and	the	underlying	risks	such	models	seek	to	capture.		

	

Coefficient	of	Riskiness	for	Various	Probability	Distribution	Functions	

	

The	CR	for	the	normal	PDF	is	3.09.	This	is	true	for	all	models	that	use	the	normal	

PDF	because	all	values	of	a	normal	PDF	are	uniquely	determined	by	the	mean	and	

standard	deviation.16		

	

																																																								
15	A	Baysean	prior	is	an	opinion	that	acts	as	a	seed	to	the	risk	model	at	the	stage	of	the	process	when	
there	is	insufficient	data	to	fully	define	a	mathematical	model.		
16	For	the	reader	who	wishes	to	check	this,	an	Excel	table	of	values	for	mean,	standard	deviation,	
99.9th	percentile	value	and	CR	can	easily	be	constructed.	Mean	and	standard	deviation	would	be	
values,	99.9th	percentile	value	would	be	Norminv(.999,mean,std	dev)	and	the	CR	would	be	99.9th	
percentile	value	less	the	mean	divided	by	the	standard	deviation.	Try	as	many	values	for	the	mean	
and	standard	deviation	as	you	wish.	



	 9

Another	commonly	used	PDF	is	the	lognormal.	The	lognormal	model	has	two	

characteristics	that	make	it	popular	for	risk	models—it	does	not	allow	negative	

outcomes	and	it	has	a	limited	positive	skew.17	

	

Figure	1.	Lognormal	PDF—CR	for		

various	means/standard	deviation	combinations	
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As	it	turns	out,	the	CR	is	a	function	of	the	ratio	of	standard	deviation	to	mean	(also	

known	as	the	coefficient	of	variance)	for	the	lognormal	PDF.		

	 	

																																																								
17	The	normal	PDF	is	exactly	symmetrical	and	allows	negative	values.	The	positive	skew	of	the	
lognormal	PDF	means	that	it	is	not	symmetrical,	extending	much	further	on	the	right	(positive)	side	
of	the	mean	than	on	the	left	(toward	zero)	side.	
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Figure	2.	Lognormal—CR	vs.	CV	

	

	

The	Poisson	PDF	is	also	widely	used	because	of	its	relationship	to	the	binomial	

distribution.	Since	the	Poisson	PDF	is	fully	determined	by	a	single	parameter,	the	CR	

is	always	approximately	3.5.		

	

The	Pareto	PDF	and	its	close	cousin,	the	exponential	PDF,	are	used	for	a	variety	of	

types	of	risks.	These	risks	all	have	the	characteristic	that	they	are	usually	fairly	

benign	but	in	rare	instances	they	produce	extremely	adverse	outcomes.	Operational	

risks	are	sometimes	modeled	with	a	Pareto	PDF.	Risks	from	extreme	windstorms	

and	earthquakes	are	also	modeled	with	Pareto	PDFs,	as	is	pandemic	risk.		

	

In	2006,	Mandelbrot	and	Taleb	together	proposed	the	use	of	the	Pareto	PDF	for	

looking	at	vulnerability	to	tail	risks:	

	

The	same	“fractal”	scale	can	be	used	for	stock	market	returns	and	

many	other	variables.	Indeed,	this	fractal	approach	can	prove	to	be	an	

extremely	robust	method	to	identify	a	portfolio’s	vulnerability	to	

severe	risks.	Traditional	“stress	testing”	is	usually	done	by	selecting	

an	arbitrary	number	of	“worst‐case	scenarios”	from	past	data.	It	
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assumes	that	whenever	one	has	seen	in	the	past	a	large	move	of,	say,	

10	per	cent,	one	can	conclude	that	a	fluctuation	of	this	magnitude	

would	be	the	worst	one	can	expect	for	the	future.	This	method	forgets	

that	crashes	happen	without	antecedents.	Before	the	crash	of	1987,	

stress	testing	would	not	have	allowed	for	a	22	per	cent	move.18	

	

The	Pareto	PDF	models	can	produce	a	wide	range	of	CR	values.	Standard	deviation,	

the	normal	PDF	concept,	does	not	always	work	well	for	a	Pareto	PDF.	In	theory,	the	

standard	deviation	(as	well	as	the	mean)	can	actually	be	infinite.	The	

recommendation	is	that	in	place	of	the	calculated	CR	value,	the	modeler	would	

report	that	the	model	indicates	wild	randomness	(WR)	or	extreme	randomness	

(ER).	The	suggestion	is	explained	in	the	appendix.	

	

Extreme	value	analysis	does	not,	by	design,	permit	a	generalized	look	at	a	statistic	

like	CR	because	it	is	fundamentally	an	approach	that	divorces	the	tail	risk	analysis	

from	the	data	regarding	the	middle	of	the	distribution	that	make	up	the	mean	and	

standard	deviation.	However,	individual	risk	models	that	blend	a	model	of	expected	

variation	around	the	mean	with	a	specific	model	of	the	extremes	based	upon	the	

generalized	extreme	value	distribution	can	produce	values	which	would	lead	to	a	CR	

calculation.		

	

Examples	from	Insurance	Risk	Models	

	

The	author	has	obtained	summary	information	from	approximately	3,400	models	of	

gross	(before	reinsurance)	property	and	casualty	insurance	risks	performed	

between	2009	and	2013	by	actuaries	at	Willis	Re.		

	

	 	

																																																								
18	Benoit	Mandelbrot	and	Nassim	Taleb,	“A	Focus	on	the	Exceptions	That	Prove	the	Rule,”	Financial	
Times,	March	23,	2006.	
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Figure	3.	3,400	insurance	risk	models19	

	

	

In	addition,	we	have	obtained	summary	output	from	standalone	natural	catastrophe	

model	runs	for	property	insurance.		

	

Figure	4.	400	natural	catastrophe	models	

	

																																																								
19	For	figures	3	and	4,	the	CR	of	4,	for	example,	indicates	a	value	between	3	and	4.		
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It	is	interesting	to	note	that	none	of	these	models	showed	a	99.9th	percentile	result	

that	was	25	standard	deviations.	But,	as	you	see,	the	natural	catastrophe	models	did	

produce	CR	values	as	high	as	18.		

	

What	you	can	see	from	these	examples	is	that	CR	does	seem	to	be	bounded	for	these	

actual	models	into	the	range	of	3	to	18	and	that	existing	processes	for	modeling	

insurance	risks	do	already	produce	a	range	of	CR	values.		

	

A	Simple	Binomial	Model	

	

Some	insight	to	the	dynamics	of	CR	can	be	reached	by	looking	at	models	of	small	

groups	of	independent	risks	that	have	low	frequency.		

	

Figure	5.	CR	for	small	binomial	groups	

	

	

If	we	start	with	looking	at	a	group	of	200	independent	risk	exposures	that	each	have	

a	likelihood	of	five	in	1,000	of	happening	separately,	the	expectation	is	for	one	loss.	

The	standard	deviation	would	be	one	as	well.	The	99.9th	percentile	result	would	be	

for	five	losses,	resulting	in	a	CR	of	4.	That	is	slightly	higher	than	the	expected	CR	for	

the	Poisson	PDF	of	3.5,	and	you	see	that	as	the	group	size	gets	larger,	the	CR	gets	

closer	to	3.5.	
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Figure	6.	CR	for	a	lower	incidence	rate	

	
	

Mean	 Std	Dev	 CR	 Economic		
Capital	

Interest	rate	 12.6M	 6.0M	 	4.5		 6.9M	

Equity	 5.5M	 10.0M	 	3.5		 22M	

Credit	 2.5M	 1.5M	 	6.0		 3.5M	

Underwriting:	Property	 20.0M	 8.0M	 	12.2		 36.8M	

Underwriting:	Auto	 6.0M	 2.5M	 	3.2		 0.5M	

Underwriting:	Health	 10.0M	 8.0M	 	3.8		 13.2M	

Underwriting:	All	other	 2.0M	 0.7M	 	4.0		 0.1M	

Reserves	 0.0M	 $12.0M	 	4.3		 37.8M	

Operational	 0.0M	 0.1M	 	6.0		 0.4M	
	

Figure	6	shows	it	is	possible	to	achieve	somewhat	higher	CR	with	a	group	with	a	

lower	mean.		

	

One	hypothesis	that	could	explain	these	simple	calculations	is	that	a	risk	which	has	a	

higher	CR	is	susceptible	to	an	extreme	loss	for	a	large	fraction	of	the	exposures	

when	the	expected	loss	is	for	a	small	fraction.	You	could	say	there	is	a	concentrated	

exposure	to	the	extreme	event.	Due	to	the	concentrated	exposure	to	the	large	event	

(hurricane	or	earthquake),	in	that	event,	their	book	of	insurance	contracts	acts	like	a	

very	small	group	of	exposures.	So	the	binomial	view	of	these	very	small	groups	may	

well	reproduce	the	experience	of	a	large	group	with	concentration.		

	

Communicating	Extreme	Risk	Inherent	in	Risk	Models	

Just	walk	a	mile	in	his	moccasins	
Before	you	abuse,	criticize	and	accuse.	
If	just	for	one	hour,	you	could	find	a	way	
To	see	through	his	eyes,	instead	of	your	own	muse.	
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(Mary	T.	Lathrap,	1895)20	

	

All	too	often,	the	explanation	for	a	model	will	be	to	identify	the	data	used	to	

parameterize	the	model.	Sometimes,	the	result	of	the	selection	of	PDF	is	mentioned,	

sometimes	not.	Rarely	is	there	any	discussion	of	the	process	for	selecting	the	PDF	

used	or	the	implications	of	that	choice.		

	

As	mentioned	above,	nontechnical	managers	are	usually	familiar	with	the	ideas	of	

mean	and	standard	deviation	as	the	defining	terms	for	statistical	models.	The	

coefficient	of	riskiness	described	here	is	proposed	as	a	substitute	for	a	discussion	of	

the	characteristics	and	implications	of	the	selection	of	PDF	that,	in	general,	is	

needed	but	is	not	taking	place.		

	

The	CR,	if	adopted	widely,	could	come	to	be	used	similarly	to	the	moment	

magnitude	scale	for	earthquakes	or	the	Saffir‐Simpson	Hurricane	Wind	Scale.	If	you	

were	presenting	a	model	of	hurricanes	or	earthquakes	and	mentioned	that	you	had	

modeled	a	2	as	the	most	severe	event,	everyone	in	the	room	would	have	a	sense	of	

what	that	meant,	even	if	they	do	not	know	anything	about	the	details	of	the	

modeling	approach.	They	will	have	an	opinion	about	whether	a	2	is	the	appropriate	

value	for	the	most	severe	possible	hurricane	or	earthquake.	They	can	easily	

participate	in	a	discussion	of	the	assumptions	of	the	model	on	that	basis.		

	

The	CR	could	become	a	similar	tool	for	broad	communication	of	model	severity.	If	

you	believe	that	Viniar’s	comment	about	25	standard	deviations	was	actually	based	

upon	a	measurement	(rather	than	a	round	number	exaggeration	to	make	a	point),	

then	you	would	doubtless	reject	the	validity	of	the	model	with	a	CR	of	3	or	4.	If	

nontechnical	users	of	a	risk	model	gained	an	appreciation	of	which	of	the	company’s	

																																																								
20	The	Poems	and	Written	Addresses	of	Mary	T.	Lathrap	With	a	Short	Sketch	of	her	Life,	ed.	Julia	R.	
Parish	(Michigan:	The	Women	Christian	Temperance	Union,	1895).	
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risks	have	CR	of	3	and	which	have	12,	it	would	be	a	large	leap	of	understanding	of	a	

very	important	characteristic	of	the	risks.		

	

So,	as	an	illustrative	example,	an	enterprise	risk	model	might	be	described	as	

follows:	

	

Figure	7.	Enterprise	risk	model:	illustrative	values	only		

(these	do	not	represent	any	actual	model)	

  Enterprise Risk Model     

  Mean  Std Dev CR Economic 
Capital 

Interest rate  12.6M 6.0M 4.5 6.9 

Equity  5.5M 10.0M 3.5 22 

Credit  2.5M 1.5M 6.0 3.5 

Underwriting: Property  20.0M 8.0M 12.2 36.8 

Underwriting: Auto  6.0M 2.5M 3.2 0.5 

Underwriting: Health  10.0M 8.0M 3.8 13.2 

Underwriting: All other  2.0M 0.7M 4.0 0.1 

Reserves  0.0M $12.0M 4.3 37.8 

Operational  0.0M 0.1M 6.0 0.4 

   

All risk (after 
diversification) 

60.4M 37M 5.0 69.1 

	

Then	the	discussion	of	the	risk	model	can	focus	on	the	three	sets	of	facts	

presented—the	projected	mean,	the	projected	standard	deviation	and	the	fatness	of	

the	tail.	These	three	facts	about	the	model	can	be	compared	to	similar	facts	about	

the	past	experience.	What	was	the	mean	experience	for	each	risk?	What	was	the	

range	of	that	experience	as	stated	by	the	standard	deviation?	What	is	the	historical	

fatness	of	the	tail?21	The	discussion	can	then	be	all	about	why	the	model	does	or	

does	not	match	up	with	past	experience.		

																																																								
21	The	historical	coefficient	of	riskiness	can	be	defined	as	the	historical	worst	case	less	the	historical	
mean	divided	by	the	historical	standard	deviation.	Since	you	will	almost	never	have	enough	historical	
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The	hope	is	that	by	turning	away	from	the	technical,	statistical	discussion	about	

choice	of	PDF	and	parameterization,	the	discussion	can	actually	tap	into	the	

extensive	knowledge,	experience	and	gut	feel	of	the	nontechnical	management	and	

board	members.	Perhaps	the	CR	can	become	like	the	moment	magnitude	scale	of	

risk	models.	Few	people	understand	the	science	or	math	behind	the	moment	

magnitude	scale,	but	everyone	in	an	earthquake	zone	can	experience	a	shake	and	

come	pretty	close	to	nailing	the	score	of	that	event	without	any	fancy	equipment.	

And	they	know	how	to	prepare	for	a	4	or	a	5	or	a	6	quake.	The	same	goes	for	the	

Saffir‐Simpson	scale.		

	

Conclusion	

“Would	you	tell	me,	please,	which	way	I	ought	to	go	from	here?”	
“That	depends	a	good	deal	on	where	you	want	to	get	to,”	said	the	Cat.	
“I	don't	much	care	where—”	said	Alice.	
“Then	it	doesn't	matter	which	way	you	go,”	said	the	Cat.	
“—so	long	as	I	get	SOMEWHERE,”	Alice	added	as	an	explanation.	
“Oh,	you're	sure	to	do	that,”	said	the	Cat,	“if	you	only	walk	long	enough.”	

	(Lewis	Carroll,	Alice	in	Wonderland,	1865)	
	

People	naturally	observe	risk	in	the	form	of	the	range	of	experienced	gains	and	

losses.	In	statistical	terms,	those	observations	are	represented	by	standard	

deviation.	Statistical	techniques	that	have	long	been	applied	to	insurance	company	

risks	to	develop	central	estimates	are	being	used	to	calculate	values	in	the	extreme	

tails	of	the	distribution	of	gains	and	losses.	These	processes	are	essentially	an	

extrapolation	from	the	“known”	risk	of	volatility	near	the	mean	to	“unknown”	risk	of	

extreme	losses.		

	

To	date,	there	is	no	established	language	to	talk	about	the	nature	of	that	

extrapolation.	The	coefficient	of	riskiness	described	here	is	an	attempt	to	bridge	that	

gap.	The	CR	can	be	used	to	differentiate	risk	models	according	to	the	fatness	of	the	

																																																																																																																																																																					
experience	to	calculate	a	99.9th	percentile	frequency,	this	discussion	will	always	be	about	how	much	
worse	we	each	think	it	can	get	in	the	extreme.		
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tails	and	could	become	a	standard	part	of	our	discussion	of	risk	models.	With	the	

use	of	a	metric	like	the	CR,	we	believe	the	knowledge	and	experience	of	nontechnical	

management	and	board	members	can	be	brought	into	the	discussions	of	risk	model	

parameterization.	The	end	result	of	such	discussions	will	both	ultimately	improve	

the	models	and	increase	the	degree	to	which	they	are	actually	relied	upon	for	

informing	important	decisions	within	a	risk‐taking	enterprise.		
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Appendix	

	

1.	The	Exponential	Risk	Model	Problem	

	

It	was	stated	above	that	some	exponential	risk	models	will	not	fit	with	the	CR	

calculation.	That	is	a	possible	problem.	The	problem	arises	because	in	some	models,	

the	variance	and	perhaps	the	mean	value	is	infinite.		

	

Mandelbrot	describes	seven	states	of	randomness	

1. Proper	mild	randomness	(the	normal	distribution)	

2. Borderline	mild	randomness	(the	exponential	distribution	with	λ	=	1)	

3. Slow	randomness	with	finite	and	delocalized	moments	

4. Slow	randomness	with	finite	and	localized	moments	(such	as	the	lognormal	

distribution)	

5. Prewild	randomness	(Pareto	distribution	with	α	=	2	−	3)	

6. Wild	randomness:	infinite	second	moment	(variance	is	infinite;	Pareto	

distribution	with	α	=	1	−	2)	

7. Extreme	randomness	(mean	is	infinite;	Pareto	distribution	with	α	≤	1)22	

	

To	solve	that	problems,	some	models	use	truncated	exponential	models.	Truncated	

exponential	models	will	have	finite	variance	but	might	still	have	unstable	sample	

values	at	the	99.9th	percentile	and	therefore	unstable	CR.		

	

Such	extreme	values	as	the	99.9th	percentile	are	mainly	used	by	insurers	that	use	

the	tail	value	at	risk		(TVaR)	as	their	primary	risk	metric.	But,	after	saying	that,	those	

firms	must	have	solved	this	problem	in	order	to	calculate	the	TVaR.		

	

So	we	conclude	there	is	a	solution	to	this	problem	for	any	risk	where	the	TVaR	can	

be	calculated.	But	we	suggest	extreme	caution	to	any	modelers	dealing	with	wild	

																																																								
22	Benoit	B.	Mandelbrot,	Fractals	and	Scaling	in	Finance:	Discontinuity,	Concentration,	Risk	(New	York:	
Springer,	1997).	
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randomness	(WR)	or	extreme	randomness	(ER).	The	CR	is	not	calculable.	But	if	their	

firm	is	really	exposed	to	wild	or	extreme	randomness,	their	problems	are	much	

larger	than	the	reliability	of	their	tail	risk	measure.	We	recommend	that	in	a	

situation	where	the	risk	model	does	indicate	wild	or	extreme	randomness,	the	CR	be	

reported	as	WR	or	ER.	We	also	presume	that	a	report	with	those	indications	will	

lead	to	very	intense	discussions	of	the	risks	being	modeled.		

	

2.	Other	Uses	for	CR	

	

Risk	modeling	is	a	difficult	and	time‐consuming	process.	If	we	develop	a	language	

around	a	tail	risk	metric	such	as	CR,	it	would	be	possible	to	estimate	risk	model‐type	

tail	results	by	identifying	the	likely	level	of	the	CR	for	a	risk	and	then	combining	that	

with	the	observed	mean	and	standard	deviation	of	actual	experience.	By	turning	risk	

calculation	into	a	three‐parameter	problem	where	one	parameter	assures	us	that	

the	tails	will	be	appropriately	“fat,”	then	our	risk	model	results	can	be	easily	and	

quickly	estimated.		

		

These	quick	estimates	can	be	used	for	ready	risk	estimates	and	also	for	model	

validation.	The	validation	can	be	to	check	the	CR	for	each	submodel	against	CR	for	

other	models	of	similar	risks;	the	quick	estimates	described	above	can	be	an	

independent	calculation.	The	model	validator	can	develop	a	tolerance	for	deviation	

of	actual	model	results	from	the	quick	estimate	as	a	trigger	for	more	in‐depth	

examination	of	particular	submodels.		

	

Another	possible	area	of	application	is	for	very	quick	estimates	of	economic	capital	

model	outcomes	based	upon	aggregated	historical	experience.	If	experience	with	CR	

measures	tell	us,	for	example,	that	the	CR	for	a	certain	line	of	business	is	usually	in	

the	range	of	3.5	to	4.5,	we	can	estimate	the	99.9th	percentile	value	from	the	

historical	standard	deviation	of	results	for	that	line	in	aggregate	and	then	

interpolate	to	get	a	99th	percentile	or	99.5th	percentile	value.	This	might	be	useful	

in	public	data	evaluations	of	insurers.		
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3.	Choice	of	Metric	

There	is	no	specific	science	to	the	selection	of	the	99.9th	percentile	value	at	risk	as	

the	basis	for	the	CR.	We	went	beyond	the	common	VaR	points	of	99.5	percent	or	99	

percent	following	the	concept	that	surveyors	use	to	find	a	point.	They	usually	make	

their	line	to	a	point	beyond	the	spot	to	be	determined	to	reduce	the	chance	of	very	

local	errors	in	the	region	of	the	desired	point.	This	calculation	could	just	as	easily	be	

made	with	99th	percentile	or	99.5th	percentile	values.	Some	practitioners	have	

suggested	that	such	alternate	values	might	be	more	stable	with	the	number	of	actual	

simulation	runs	that	are	made	for	some	of	the	risk	models.	The	thinking	behind	the	

selection	of	99.9	percent	was	that	a	one	in	1,000	was	definitely	“in	the	tail”	and,	to	

look	at	fatness	of	tail,	it	might	be	better	to	look	further	out	than	the	model	values	

being	used	“all	of	the	time.”	The	choice	was	also	influenced	by	the	fact	that	the	

normal	PDF	value	for	99.9	percent	produced	a	CR	of	approximately	3,	rather	than	

the	2.575829304	at	99.5	percent	or	2.326347874	at	99	percent.	It	seemed	easier	to	

talk	about	a	metric	that	ran	from	3	to	18,	than	for	one	that	went	from	2.576	to	

whatever.		

	

Using	a	real	value	rather	than	an	index	has	an	advantage	as	well.	First	of	all,	if	we	

think	of	the	one‐in‐1,000	event	as	a	worst‐case	event,	then	with	using	CR,	we	start	

by	reminding	folks	the	worst	case	is	at	least	three	times	the	standard	deviation.	This	

is	important	because	often	people	are	lulled	into	a	false	sense	of	security	when	some	

time	goes	by	without	the	experience	of	any	tail	events.	Then	when	we	say	a	risk	has	

a	CR	of	6,	that	means	the	worst	case	is	simply	six	times	the	standard	deviation	

worse	than	the	mean.	So	if	we	expect	things	to	mostly	fall	within	one	or	two	

standard	deviations,	then	the	CR	gives	a	sense	of	how	much	worse	the	worst	case	

can	be,	without	complicated	multistep	calculations.		

	

The	question	of	unstable	values	can	be	resolved.	If	a	99.9th	percentile	CR	becomes	a	

standard	value,	then	occasionally	the	risk	models	can	be	left	to	run	for	more	

scenarios	to	produce	stable	values	at	that	return	period.	But	if	that	is	not	a	viable	
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solution	because	the	models	are	simply	unstable	at	that	return	period,	then	that	is	

probably	a	limitation	which	needs	to	be	understood	by	the	users.		

	

Finally,	the	thinking	was	that	if	CR	would	be	used	eventually	to	judge	the	

reasonableness	of	another	point	in	the	tail	such	as	99.5	percent,	then	that	validation	

was	more	powerful	if	it	could	be	stated	that	the	model	results	were	reasonable	out	

past	that	value	and	that	the	99.5th	percentile	value	was	consistent	with	the	99.9th	

percentile	value.	By	focusing	solely	on	the	99.5th	percentile	value,	modelers	and	

model	users	run	the	risk	that	their	models	are	not	even	viable	at	99.51th	percentile.	

And	a	focus	on	just	that	single	metric	is	itself	dangerous.23		

	

However,	even	if	these	arguments	for	99.9th	percentile	were	compelling,	it	is	highly	

likely	that	some	models	might	adopt	the	idea	but	not	the	calibration.	So	we	suggest	

that	when	the	CR	is	calculated	to	anything	other	than	99.9th	percentile,	that	be	

made	clear	with	a	subscript	which	states	the	percentile	(i.e.,	CR99.5%).	

	

4.	Further	Research	

This	paper	is	meant	to	be	the	introduction	of	one	possible	metric	for	fatness	of	tails.	

If	there	is	sufficient	interest	in	using	this	metric,	then	it	should	be	tested	against	

various	standards	of	robustness	for	risk	metrics,	for	example,	the	criteria	for	

coherent	risk	measures.24		

	

There	could	also	be	research	into	the	range	of	CR	values	for	different	models	of	

similar	risks.	How	wide	is	the	range	of	CR?	What	are	the	drivers	of	higher	or	lower	

CR	values	within	a	class	of	risks?	How	to	predict	the	CR	without	actually	modeling	a	

risk?		

	

																																																								
23	David	Ingram,	“Risk	and	Light,”	paper,	2010,	http://ssrn.com/abstract=1594877.	
24	Philippe	Artzner,	Freddy	Delbaen,	Jean‐Marc	Eber,	and	David	Heath.	“Coherent	Measures	of	Risk,”	
Mathematical	Finance	9,	no.	3	(1999).	
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With	that	sort	of	information	in	hand,	additional	research	might	be	undertaken	to	

see	if	there	is	a	reasonable	way	to	take	the	three	parameters	we	might	have	

separate	from	a	risk	model—mean,	standard	deviation	and	CR—and	create	a	simple	

distribution	of	gains	and	losses.	That	method	might	well	be	different	for	different	

levels	of	CR.	The	range	of	expected	CR	values	determined	independently	of	a	model	

might	also	be	a	good	piece	of	information	to	drive	the	actual	selection	of	PDF	for	the	

risk	model.		

	

	Very	preliminary	views	of	CR	for	full	enterprise	risk	models	that	include	both	

independent	and	interdependent	risks	suggest	the	effect	of	diversification	is	a	

smaller	CR.	Further	research	could	be	done	to	look	at	how	the	CR	performs	for	

combinations	of	independent	and	interdependent	PDFs	to	see	if	there	is	any	

predictable	reduction	in	CR	from	the	combination.		

	

Ultimately,	this	further	research	might	lead	to	the	conclusion	that	there	is	a	better	

measure	of	tail	risk.	But	it	would	be	a	good	result	if	some	tail	risk	measure	that	can	

be	widely	understood	is	widely	adopted.		
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