

Pullanta's Carbon Emission Reduction Proposal

Shenzhen University

Junfeng Lin, Dexin Mo, Junyu Chen, Wanyi Wang, Wenqing Tan

Advisor: Jingchao Li (jingchaoli@szu.edu.cn)

Contents

1	Exec	cutive Summary	3
2	Ana	lysis Methodology	4
	2.1	Purpose and Background	4
	2.2	Environment Analysis	4
	2.3	Data Limitation and assumptions	7
	2.4	Methodology	9
3	Desi	ign of Carbon Credit	10
	3.1	Annual and Ultimate Goal of Carbon Emission	10
	3.2	Issue Arrangement of Carbon Credit	11
		3.2.1 The design and arrangement of free allocation	11
		3.2.2 The arrangement of direct pruchase and bonds	13
		3.2.3 Detailed arrangement of carbon credit	14
	3.3	Price of Carbon Credit	15
		3.3.1 The environmental cost of carbon	15
		3.3.2 the Social cost of carbon	15
	3.4	Design of Carbon Credit's Market	16
	3.5	Design of Carbon Credit's Punishment	18
	3.6	Impact of Carbon Credit's Design	18
4	Desi	ign of Financial Instrument	20
	4.1	General Characteristic of Financial Instrument	20
	4.2	Issue Arrangement of Financial Instrument	21
	4.3	Price of Financial Instrument	22
		Pullanta's Carbon Emission Reduction Proposal	4

	March 1, 2	020
	4.4 Impact of Financial Instrument	22
5	Enterprise Risk Management	24
	5.1 Carbon Over-emission Risk	24
	5.2 Economic Risk	26
6	Conclusion	27

1 EXECUTIVE SUMMARY

This report analyzes historical carbon emission of Pullanta and collects related research to explores how Pullanta can achieve goals of reducing carbon emissions to 25% below the 2018 level by the end of 2030 and generate revenue to fund climate change mitigation. Towards these goals, this report offers a comprehensive proposal including the design of carbon credit and financial instruments. complete with impact analysis and enterprise risk management.

This report identifies three types of carbon credit issuance methods, with corresponding issuance quantity and validity period. Secondly, the environmental and social costs of carbon credit are determined using the biological rent and DICE models, respectively, as the basis for pricing. The pricing result is 892 Pulo in 2020, which is then decreasing annually to 712 Pulo in 2030. Finally, the secondary market trading system and punishment mechanism for carbon credit are also designed, and the economic, legal and environmental impact of these designs on government and enterprises are also analyzed.

Moreover, we identifies three quarterly interest-bearing carbon bonds with different-maturities and two European options with different maturities. Then, in accordance with the principles of liquidity and stability, the number of bonds issued at each maturity each year is determined, and the risks and costs of government and enterprise, as well as the advantages and disadvantages, are analyzed.

The report concludes with enterprise risk analysis of the entire design, including over-emission and economic risk. The results of the sensitivity and scenario analysis show that the amount of carbon over-emissions is more sensitive to the number of enterprises emitted illegally, and the probability of completing the 90% of annual goal under the base scenario is 90.88%; Government revenue is more sensitive to changes in GDP, and government revenue will increase and decrease by approximately 44 billion Pulo in the best and worst scenarios, respectively.

2 ANALYSIS METHODOLOGY

2.1 PURPOSE AND BACKGROUND

In recent years, with the development of industrial civilization and social economy, climate change and its countermeasures have gradually become a global hot spot. Greenhouse gas emissions are considered as a social and environmental cost, and avoiding or reducing emissions is an increase in social and economic benefits. IPCC (Intergovernmental Panel on Climate Change) paid special attention to issues such as "global warming at 1.5 °C" and "climate change and land" in the sixth assessment report[1]. Energy and industrial systems have also proven to be important causes of climate change.

Pullanta is a virtual developed country. Based on the data provided by Pullanta, we will develop a carbon emission reduction plan for Pullanta, and explore the relationship between the carbon credit trading market, the financial system and social costs. With the expectation of reducing carbon emissions for Pullanta by the end of 2030, the purpose of initially establishing a carbon credit market is set.

2.2 ENVIRONMENT ANALYSIS

The environmental problem is getting increasingly serious that the government has paid more attention to it, carrying out many instructions to control the carbon emission amount. Despite the tax measure, EU has set up the first carbon emission exchange proposal in January 2005 which has been a great success. Our report is conducted based on the past trading mechanism, adding some new schemes to better solve the environmental problem in Pullanta.

Alternative approaches or mechanisms to encourage reduction of carbon emissions is given in Table 1. Risk and cost of government, corporation and investor are given in Table 2.

TABLE 1: ALTERNATIVE APPROACHES OR MECHANISMS TO ENCOURAGE REDUCTIONOF CARBON EMISSIONS

	Domestic taxes on carbon emission	Tariffs on carbon emission	Raise the price of carbon emission right appropriately	Trading market on carbon emission right
Detailed on Mea- sures	Carbon emissions tax is a pollution tax. The more carbon is emitted, the higher the cost. Government departments will first set a price for each ton of carbon emissions, and then use this price to convert taxes on electricity, natural gas or oil.	It is generally referred to the imposition of carbon dioxide emission tariffs on high energy-consuming imported products. This is actually a means by which developed countries rely on advanced environmental protection technology to set special standards to prevent other countries' products from entering their own markets, thereby protecting their trade, which is essentially protecting trade in the name of environmental protection. That is, trade tariffs are levied on imports from countries that have not implemented carbon emission reduction limits.	In order to reduce carbon emissions and control excessive carbon dioxide emissions, the government appropriately raises the price of carbon emission rights based on the current price of carbon emission rights in the carbon trading market.	Carbon emissions trading is a market mechanism adopted to promote global greenhouse gas emission reductions and reduce global carbon dioxide emissions. The two parties to the carbon transaction signed a contract, and the buyer obtained the greenhouse gas emission reduction amount by paying the seller, and used the purchased emission reduction amount to mitigate the greenhouse effect, thereby achieving its emission reduction target. At present, the carbon dioxide trading market is mainly divided into a project-based trading market and a quota-based trading market.
Advan- tages	 Increase government revenue; Taxation makes the cost of using polluting fuels higher, which will prompt public utilities, commercial organizations and individuals to reduce fuel consumption and improve energy efficiency; Help developed countries achieve their greenhouse gas reduction goals, but also the income can be used to help developing countries cope with climate change, as an important source of funding for developed countries. 	 For developed countries, the implementation of carbon tariffs is conducive to enhancing global competitiveness and international influence, consolidating their leading position in the future green economy with low carbon as the core, and balancing developing countries; For developing countries, the opportunity to develop a green economy can be actively used to change the economic structure. 	 The International Energy Agency believes that the rise in carbon prices is a high-tech solution to climate change and is economically attractive; Incentivize carbon emitters to adopt new technologies, which will help reduce carbon emissions; Rising consumer costs will stimulate consumers to increase energy use or purchase relatively inexpensive low-carbon energy resources, which indirectly promotes carbon emission reduction and energy structure optimization. 	 Carbon trading is an important institutional innovation that uses market mechanisms to control and reduce greenhouse gas emissions and promote green and low-carbon transitions in economic development methods. It is an important policy tool to strengthen the construction of ecological civilization and fulfill international commitments to reduce emissions; Increasing the asset boundary of an enterprise, and at the same time setting a clear standard for such assets, so that the enterprise can directly or indirectly benefit from it. Therefore, the carbon trading mechanism is an incentive and constraint mechanism to increase enthusiasm; The carbon trading system can effectively broaden the scope of financial services and improve the financial services and improve the financial services and financial products such as carbon financial products, carbon option futures trading have emerged at the historic moment, which has greatly promoted financial product innovation and diversified development of the financial market.

Τ

Т

Τ

TABLE 2: RISK AND COST OF GOVERNMENT, ENTERPRISE AND CONSUMER

	Government	Enterprise	Consumer
Risks in carbon reduc- tion plans	The government plays a leading role in macro-control in the carbon emission reduction plan, but it also faces the risk that the carbon reduction plan will not be successfully implemented due to force majeure and other factors, and the national macro-control carbon emission reduction requirements cannot be achieved. Government officials at all levels are under pressure to complete carbon emission reduction assessment tasks.	Enterprises are the backbone of energy-saving and emission-reduction participants. As a rational individual seeking to maximize economic benefits, the amount of results brought by investing in energy-saving and emission-reduction work directly determines the effectiveness of the enterprise's emission-reduction work. However, the government usually devotes most of its energy to large state-owned enterprises with high pollution and high energy consumption, and small and medium-sized enterprises need to invest a lot of funds if they want to update equipment for energy conservation and emission reduction. This is a huge risk for them.	Companies may transfer part of the cost of purchasing carbon credits to commodity prices, so consumers will face the risk of rising prices, such as coal and gasoline. At the same time, under a wide range of emission reduction plans, some consumers, such as freight drivers, may also face certain use and travel restrictions.

Probable cost	 In the preparation of carbon emission reduction reports, if local governments require the reporting of local carbon emission reduction data within their jurisdictions, it will involve the preparation of carbon emission reduction reports, training of report writing staff, and large carbon emission users. Being audited by an independent third party, etc., these will increase the cost of the government; During the whole process of carbon emission reduction, the government also took time and effort to manage the personnel involved in the plan. 	 Purchasing carbon emission reduction equipment or eliminating backward production capacity equipment, purchasing or self-developing carbon emission reduction technology all require huge expenditures; In terms of carbon emission trading, activities such as training of carbon emission trading personnel, finding counterparties, negotiating carbon emission quotas with the Government Development and Reform Commission, and determining transaction prices will increase costs. 	 Additional daily costs, while some travel conveniences will also disappear; Some industrial and construction consumers may increase their purchase and negotiation costs, etc.
The ad- vantages that these risks and costs brought about	 Taxes and fines during carbon trading have increased government revenue; The effective implementation of a national emission reduction plan can increase the country's international influence and consolidate its leading position in the future green economy with low carbon as its core. 	It can promote enterprises to transform to a low-carbon and green development path while gaining economic benefits and develop a green economy.	 With development of carbon emission technology, the unit energy production capacity will increase, the price of goods may also decrease, and the quality of goods will improve; Relevant products using renewable energy will be further promoted, and consumers can profit from it, such as being able to buy new energy vehicles at lower prices, etc.
The disad- vantages that these risks and costs brought about	If the carbon emission trading market is highly developed, the excess carbon emission quotas saved by carbon emission reduction activities can be sold to those who need carbon emission rights, which will increase the profit path of carbon emission reduction activities. However, at present, it has not achieved the particularly desirable results. Governments of all countries must assume social responsibility and implement various carbon and carbon emissions trading plans strictly and responsibly. Otherwise, there may be a situation where the cost of carbon emission reduction is higher than the benefits of carbon emission reduction.	 Due to the limitation of carbon emission reduction technology, insufficient development and reserves of low-carbon technology, the backwardness of carbon emission reduction technology and the huge amount of funds needed to develop carbon emission reduction technology will undoubtedly increase the uncertainty of the outlook; Small and medium-sized enterprises have no incentive and ability to carry out energy conservation and emission reduction work if there isn't any incentive mechanism put forward by the government; In terms of carbon emission reduction government subsidies, the amount of subsidies is often lower than the cost of emission reduction. 	 The daily cost of ordinary consumers will increase slightly; Consumers in the carbon industry, as individuals involved in carbon emissions, will be more affected. Not only will the purchase cost increase, but there will also be certain use restrictions.

2.3 DATA LIMITATION AND ASSUMPTIONS

Some assumptions shown in Table 3 are made referring to plenty of data, articles and experi-

ence to make our design and analysis for carbon credit and financial instruments more practi-

cal.

Assumptions	Data limitation	References	Reasons
Rate of return : yield at 2.5%	The past yield rate is unknown in Pullanta.	Federal funds rate from 1994 to 2018.	The interest rate market in Pullanta has been similar to that of the United States. The arithmetic mean of Federal funds rate from 1994 to 2018 is 2.5%, so we assume that the rate in Pullanta would be around 2.5%.
Consumption: Consumption takes up 75% of GDP, namely $C_t = 0.75GDP_t$.	The consumption in Pullanta is unknown.	The percentage of consumption in GDP between 1995 and 2018 of ten representative countries including America, China, Japan, Germany, India, France, Britain, Italy, Brazil and Canada.	Consumption takes up 75% of GDP on average among the ten countries.
Utility : The social cost of carbon in Pullanta is risk-neutral.	The preference to carbon emission is unknown in Pullanta.	Yang P, Yao Y F, Mi Z, et al (2018)[2]. Tol, Richard (2019)[3].	It is common to assume risk as neutral in many researches.

TABLE 3: ASSUMPTIONS DUE TO DATA LIMITATION

Related to the given data and variables, we also have some derivative assumptions as shown

in Table <mark>4</mark>.

TABLE 4: SOME OTHER ASSUMPTIONS BASED ON THE GIVEN DATA AND TABEL 1

Assumptions	Variables	Reasons
Population: The number of people grows linearly. Setting 2019 as the basic year, the population at the following end of the year is calculated by $L_t = 20,000,000 + 157,090t$ (t = 1 represents at the end of year 2020)	Population	After testing the historical data from 1995 to 2019 by linear regression method, the growth of population is found to be obviously linear. (See Figure 1)
GDP: GDP grows linearly. Setting 2019 as the basic year, the population at the following end of the year is calculated by $GDP_t = 725, 747, 352, 744 +$ 20, 734, 283, 275t (t = 1) represents at the end of year 2020)	Gross Domestic Product (current P)	There has been a general uptrend in GDP from 1995 to 2019 and a linear growth in the recent five years. (See Figure 1)
The relation between consumption and carbon emission: $C_t = 6.603 \times 10^{-16} (E_t)^{2.978}$	Gross Domestic Product (current P), Total CO2e Emissions by Sector/Source (metric tonnes)	We have assumed that consumption accounts for 30% of the GDP. With the GDP data, the amount of consumption and the relationship between consumption and carbon emission can be calculated. (See Figure 1)

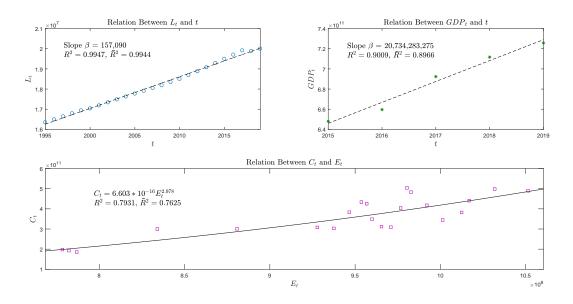


FIGURE 1: THE RELATION BETWEEN DIFFERENT VARIABLES

2.4 METHODOLOGY

The main issues raised in this report and the corresponding methods in each chapter is con-

cluded in Table 5.

Content	Main Issues	Solutions
	Issue Arrangement of Carbon Credit	Gather relative regulations about carbon credit and design a suitable one for Pullanta.
Design of Carbon Credit	Price of Carbon Credit	Collect paper, establish carbon social cost and environmental cost models to give carbon credit a set-up proper prices.
	Design of Carbon Credit's Market	Collect market exchange laws and adjust according to the reality situation in Pullanta.
	Design of Carbon Credit's Punishment	Collect relative regulations on the over-emission punishment and design based on collected regulations.
	Impact of Carbon Credit's Design	Analysis on the basis of the design result of issuing and pricing, secondary market and punishment institution.
Design of Financial	General Characteristic of Financial Instrument	Design the financial instrument based on the design of Carbon Credit and the specific condition in Pullanta.
Instrument	Issue Arrangement of Financial Instrument	Build models to get the distribution amount of each financial products, ensuring that the quantity issued each time is about the same.
	Price of Financial Instrument	Use pricing formula.
	Impact of Financial Instrument's Design	Analysis on the basis of the design result of issuing and pricing .

TABLE 5: THE MAIN ISSUES AND SOLUTIONS

Enterprise Risk Management	Carbon Over-emission Risk	Assuming that the average number of over-emission company and the average amount of over-emission of carbon subject to log-normal distribution and normal distribution respectively. Analysis the effect on annual and final goal caused by the mean value and variance.
	Economic Risk	Setting that market yield and GDP vary in the certain ranges and use the tables to determine their effect on the revenue of government

3 DESIGN OF CARBON CREDIT

3.1 ANNUAL AND ULTIMATE GOAL OF CARBON EMISSION

We first set up our annual and final goal for Pullanta in the year 2020 to 2030. The final emission goal in 2030 is 75% of that in 2018(922, 441, 064), namely 691830798(922, 441, 064 \times 75% = 691, 830, 798).

We consider a practical proposal to be regular so that the affected companies and consumers can adjust their behaviors and judgements in accordance with the regular fluctuation of the variables. **As a result, the annual goal varies once a year in a fixed rate based on the emission level in 2018, making it easier for the companies to adjust their own arrangement.** The annual and final goal of carbon emission level is given in Table 6.

Year	Annual Goal of Aggregate Carbon Emission (mtCO2e)
2018	922,441,064
2020	901,476,495
2021	880,511,925
2022	859,547,355
2023	838,582,786
2024	817,618,216
2025	796,653,646
2026	775,689,077
2027	754,724,507
2028	733,759,938
2029	712,795,368
2030	691,830,798 (Ultimate Goal)
Reduction of Annual Goal	20,964,569 or 20,964,570

TABLE 6: THE ANNUAL AND ULTIMATE GOAL OF CARBON EMISSION

3.2 ISSUE ARRANGEMENT OF CARBON CREDIT

Carbon credit is the emission right of the company. Government would supervise the amount of carbon emission and carbon credit. Once a company discharge over the upper limit, companies will get their punishment of which detailed regulations will be discussed later after our introduction of the issue, pricing of carbon credit(in 3.5).

Carbon credit would be allocated in three ways to the company(see Table 7), free allocation(50%), direct purchase(30%) and bonds(20%). Free allocation means that the companies can get the amount of carbon emission right for free. Direct purchase requires the companies to buy the carbon credit at the price set by the government directly. Companies can also buy bonds whose interest is allocated in the means of carbon credit. The reasons for setting the proportion of the three issuance methods will be explained in 3.2.1 and 3.2.2.

TABLE 7: THREE WAYS OF CARBON CREDIT'S ALLOCATION

Туре	Free Allocation	Direct Purchase	Bonds
Percentage	50%	30%	20%

3.2.1 THE DESIGN AND ARRANGEMENT OF FREE ALLOCATION

It is obvious that companies benefit a lot from free allocation, while there are two sides when it comes to the government. High percentage of free allocation brings out rapid development but also have a harmful influence on the reduction goal. On the contrary, less amount in free allocation makes the goal easier to be reached but go against the economic development. We set 50% of the total emission level in this report for the free allocation part referring to the regulation in Europe whose percentage is 40% [4]. We consider it a nice level that would balance the two sides. The period of carbon credit's validity lasts only for a year from the beginning of the year

to the end and the right would be allocated again repeatedly.

Zhang(2018)[5] introduces two ways in free allocation, one is historical method and the other is basic method. The former one allocate the carbon credit according to the company's historical emission amount and the latter one allocate averagely to each company. The advantage and disadvantage of historical method and basic method are given in Table 8.

Method	Advantages	Disadvantages
Historical method	The free allocation of carbon credit is directly proportional to the company's own scale. The carbon credit could be used fully and it is also benefit to the economy.	It is unbeneficial to the small companies and makes it tougher for the newly-established company to enter this field.
Basic method	Friendly to all companies.	The small companies may waste a part of the carbon credit for they don't need that much, while the big company which needs more carbon credit to satisfy its own production may be restricted.

TABLE 8: THE ADVANTAGE AND DISADVANTAGE OF HISTORICAL METHOD AND BASIC METHOD

In our design, half of the free allocation is presented in historical method regarding to the previous percentage of emission and the rest in basic method. If the free allocation part exceeds more than twice the previous carbon emission, the company can only get twice the previous emission amount. (Detailed reasons are explained in 3.2.2)

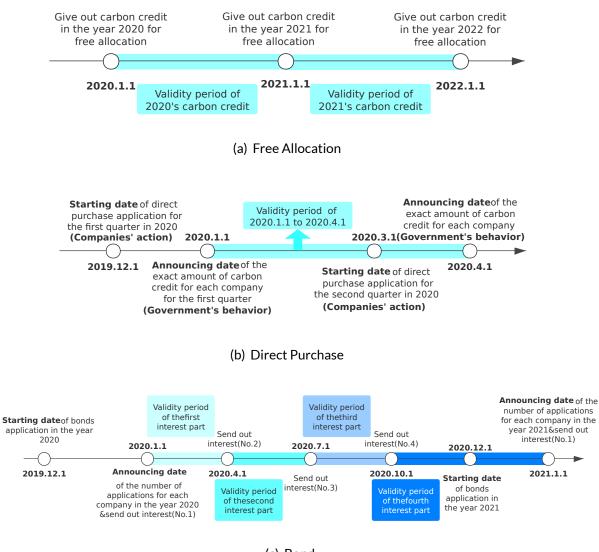
The new-established company can get 0.5% of the surplus free allocation as its first year's free allocation part. The number of zero carbon emission companies is given in Table 9.

(As you can see in the Table 9, considering that there may be some companies that are not exist or don't hand in their report on time, we estimate that the number of new-established company each year would be no more than 200. As we assumed that the companies are established in even distribution, we can easily set the free allocation part as $\frac{1}{200} = 0.5\%$)

Year	2019	2018	2017	2016	2015
Number of zero carbon emission	470	583	541	526	533

TABLE 9: NUMBER OF ZERO CARBON EMISSION COMPANIES

3.2.2 THE ARRANGEMENT OF DIRECT PRUCHASE AND BONDS


Besides free allocation part, companies can apply for carbon credit at a set of price via direct purchase and carbon bonds. They can get the fixed amount of carbon credit by direct purchase or get some flexible carbon credit by buying bonds. Because direct issuance is less difficult and has less procedures than bond issuance, direct issuance and bond issuance account for a total carbon credit of 30% and 20% when 50% of carbon credit has been issued for free.

In our proposal, both the price and amount of carbon credit issued via direct purchase and carbon bonds are the same to all kinds of industries otherwise those industries which get more carbon credit may sell a large quantity of carbon credit to the others, resulting in frequent fluctuation in the price of carbon credit, which could bring about uncertain market risk. In our design, even if there are some companies that need more carbon credit, they can get enough via the second market.

The detailed date and way of issuing is presented in Figure 2 comparing difference of three main ways.

In the direct purchase and carbon bonds part, if the total applied amount of all the companies exceeds the total issue amount, the companies can only get company's $\frac{Applied Amount}{Total Applied Amount} \times$ *Issue Amount*. The upper amount of application of each company is set the twice of the actual emission amount of last quarter. For the reason that after analyzing the 1930 companies' growth rate of carbon dioxide emission amount between 2015 to 2019, we find that only 92 companies have the growth rate of 100% and the rest are under 100% (see Appendix C-2). We set twice as the upper limitation to make most of the companies fulfil their production plan. We will have further discussion about the upper limitation of carbon bonds application in charter

4.1.

(c) Bond

FIGURE 2: DETAILED DATES AND WAYS OF ISSUING

3.2.3 DETAILED ARRANGEMENT OF CARBON CREDIT

We calculate the issue amount of the three parts in detail as shown in Table 10.

Year	Free allocation	Direct purchase	Carbon bonds	Total issue amount
2020	450,738,248	270,442,949	180,295,298	901,476,495
2021	440,255,963	264,153,578	176,102,384	880,511,925
2022	429,773,678	257,864,207	171,909,470	859,547,355
2023	419,291,393	251,574,836	167,716,557	838,582,786
2024	408,809,108	245,285,465	163,523,643	817,618,216
2025	398,326,823	238,996,094	159,330,729	796,653,646
2026	387,844,539	232,706,723	155,137,815	775,689,077
2027	377,362,254	226,417,352	150,944,901	754,724,507
2028	366,879,969	220,127,981	146,751,988	733,759,938
2029	356,397,684	213,838,610	142,559,074	712,795,368
2030	345,915,399	207,549,239	138,366,160	691,830,798

TABLE 10: ARRANGEMENTS OF THE ISSUE AMOUNT IN EACH YEAR

3.3 PRICE OF CARBON CREDIT

We take the environmental cost and social cost into consideration in our report to calculate the precise cost of carbon credit and eventually the price of carbon credit.

3.3.1 THE ENVIRONMENTAL COST OF CARBON

We use biocapacity and ecological footprint to evaluate the environmental cost. It is reported in Global Footprint Network[6] that the difference between biocapacity and ecological footprint could be conducted as the ecological surplus (+) or deficit (-) of a country. Kurt Kratena(2008)[7] found out that the ecological rent accounted for about 4% of GDP. So environmental cost each year can be conducted as equation 1, in which the divided 50% of carbon emissions represent carbon credits issued in non-free ways.

$$ECC_t = 0.04 \times GDP_t / (0.5E_t) \tag{1}$$

3.3.2 THE SOCIAL COST OF CARBON

Yang P, et al. (2018)[2] and Tol, Richard. (2019)[3] used **DICE** model to calculate the social cost of carbon with this utility function(see equation 2):

$$W = \sum_{t=1}^{T} \frac{C_t^{1-\alpha} L_t (1+\rho)^{-t}}{1-\alpha}$$
(2)

 α is the coefficient of risk aversion. ρ is the market rate of return.T represents the length of observation. Basically, this utility function is the present utility value of the future.

In DICE model, the social cost of carbon(SCC) can be written as equation 3

$$SCC = \frac{\partial W}{\partial E_t} / \frac{\partial W}{\partial C_t}$$
 (3)

We assume that the carbon emission would be sustained at 2030's level after 2030 and T = 10. Under the assumptions in Table 3 and Table 4, we can get equation 4

$$SCC_{t} = 1.996 \times 10^{-15} \times \frac{\sum_{i=1}^{10} (E_{t+i})^{1.978} L_{t+i} (1+2.5\%)^{-i}}{\sum_{i=1}^{10} L_{t+i} (1+2.5\%)^{-i}}$$
(4)

Eventually, we design the price of carbon credit to be the sum of environmental cost and social cost(see Table 11).

Year	Environment Cost of Carbon Credit	Social Cost of Carbon Credit	Price of Carbon Credit
2020	66	826	892
2021	70	785	854
2022	73	747	821
2023	77	714	792
2024	81	686	767
2025	85	662	747
2026	90	641	731
2027	95	625	720
2028	99	613	713
2029	105	605	710
2030	110	601	712
2031	113	601	714

TABLE 11: PRICE OF CARBON CREDIT

3.4 DESIGN OF CARBON CREDIT'S MARKET

Pullanta should deliver carbon credit and carbon financial instruments through the primary

market, since it needs to set a beginning price for a given credit or bond to macro-control

carbon emissions, with the hope of achieving its annual goal. But we also recommend setting up a platform to provide a carbon trading venue between companies, which will be discussed in detailed later.

As for the design for the secondary market, we highly recommend to set up a platform, like Carbon Trade Exchange (**CTX**), which is the world's first electronic exchange for carbon credits and operates spot in multiple global environmental commodity markets. **Such exchange is best suited for creating liquidity on secondary market because it provides a platform for each company to sell their redundant carbon credits, or to buy what they need, at specific trading time.**

In order to facilitate carbon trading among all the entities by promoting a system of good business practice, we modify the existing rules "Carbon Trade Exchange Rules and Regulations for the Voluntary Carbon Market 22 May 2018" provided by **CTX**[8], making it possible to meet the requirements of the implementation plan given in this paper.

The adjustments we made are as following:

FRAME 1: ADJUSTMENTS

- Carbon credits got via financial instruments will expire at the end of each seasons, while carbon credits that are originally given for free or sold the government will expire at the last day of the year. Selling members are responsible for providing the expiration date of the carbon credits whenever they post a Selling List in the trading platform.
- Companies are not required to provide the type of Unit to which the Sales Listing relates. Since the transaction only includes carbon credit, while types of Unit in
 CTX includes not only carbon but also Renewable Energy Certificates (RECs) and water.

At the end of each season, the government will check whether each entity has enough

carbon credits to emit the carbon dioxide that they emitted during that season. Therefore, each entity just need to make sure that they have sufficient carbon credits at the end of each season, otherwise they need to pay massive fines.

3.5 DESIGN OF CARBON CREDIT'S PUNISHMENT

The companies ought to follow the contract or they could get relevant punishment. To standardize the carbon credit exchange market so as to reach our goal, we set our punishment rules referring to the European criterion[9]. The over-emission company whose total carbon emission of the quarter calculated on the last day quarterly, namely the settlement date, overpasses the upper limit would get the following punishments:

FRAME 2: PUNISHMENTS

- 1. 1000 Pulo is required as penalty for per over-emission part.
- 2. The company's free allocation credit in the next year would reduce 110% of the amount of over-emission.
- 3. Related announcement would be made as a warning.
- 4. Extra taxation will be imposed on the company.
- 5. Some mandatory measures in law would be taken when necessary.

3.6 IMPACT OF CARBON CREDIT'S DESIGN

Impact of carbon credit's design and engagement measures are given in Table 12.

TABLE 12: IMPACT OF CARBON CREDIT'S DESIGN AND ENGAGEMENT MEASURES

	Government/Society	Enterprises	Factors and actions that can be considered and taken by government
Laws Aspect	 Formulate regulations to clarify the rights and obligations of various functional departments and enterprises related to carbon credit; Accounting department needs to issue relevant accounting regulations; Various functional departments have issued provisions to announce and clarify the distribution methods to enterprises; Construction of carbon credit purchase platform; The government regularly announces the time and price of the issue and reminds companies to apply in time; The government regularly punishes and warns companies for excessive emissions; Exchange platform issues regulations to ensure that carbon trading is legal and smooth. 	 Cooperate with the supervision of government departments in accordance with the provisions of laws and regulations; Accounting will be more complicated; Need to clearly understand the issuance method of carbon credit, and choose the appropriate purchase plan according to their own needs; Open an account on the exchange platform and trade in accordance with regulations. 	Differences in domestic industries and regions: Due to the different levels of resource accumulation and use of each industry, the unified carbon credit price and quota have different degrees of impact on different industries. Similarly, regions with different levels of development are affected differently. The government can consider the carbon emissions of different industries and the economic differences in different regions, give appropriate subsidies to resource-intensive enterprises and areas with underdeveloped economic development, help companies through the difficult period of improving energy efficiency, and can effectively curb the development of the black market
Economy Aspect	 Economic development will slow down to some extent due to carbon emission reduction; Carbon emission reduction technology accelerates development, and the scale of the technology industry increases; Carbon emissions are reduced, but the scale of renewable energy use will increase, which has two sides for companies in the energy industry; The government obtains corporate subscription income and tax revenue, and the government budget increases; Carbon raw materials and reprocessing industries will suffer; Encourage the development of the primary industry. 	 Need to pay the government in exchange for carbon credit; Add additional taxes and transaction costs; There is a risk of excess discharge, which may result in severe penalty losses; Adopt more advanced carbon emission reduction technology and improve energy utilization rate and increase unit energy income; After reducing carbon emissions, excess carbon credits can be sold for income. 	black market. Impact of neighboring countries' carbon emission reduction plans on their own carbon emission reduction plans: If neighboring countries also implement carbon reduction plans of the two countries have different degrees of impact on enterprises, it may cause domestic companies to flow to foreign countries or the inflow of foreign companies into the country which may reduce the possibility of achieving their national carbon reduction targets. At the same time, relevant arrangements in the plan also need to be continuously adjusted (such as the number of free quotas and the number of bonds issued). In addition, the difference in the implementation of the carbon emission reduction plan will also cause residents to migrate between the two countries, and also affect related indicators in the plan (such as the pricing governments should strengthen cooperation and exchanges to discuss the impact on their respective emission reduction plans on
Environ- ment Aspect	 Direct reduction of CO2 emissions, contributing to curbing global warming; The area of arable land and forest land will increase, and biodiversity will develop; Increase biocapacity, decrease biological footprint and turn ecological deficit into ecological surplus; Increase use of renewable energy. 	Reduce carbon emissions; Seek the use of renewable energy.	enterprises and residents in their own countries and other countries to ensure that the carbon emission reduction plans formulated by each country have a minimum impact on neighboring countries.

4 DESIGN OF FINANCIAL INSTRUMENT

4.1 GENERAL CHARACTERISTIC OF FINANCIAL INSTRUMENT

Our financial instrument includes options and bonds whose interest is presented in the form of carbon credit. In our proposal, we design three different terms of bonds and options. Detailed feature is shown in Table 13 and Table 14.

Financial Instru- ment	Term	Periodic interest	Release Period	Principal	Interest return date	Principal Value Return Date
Bonds	One year	1 unit of carbon credit	Every year	1,000	The beginning	The end of each
	Six years	5 units of carbon credit	Every six years	5,000	of each quarter	relative year(At maturity)
	Twelve years	10 units of carbon credit	Every twelve years	10,000		

TABLE 13: THE BASIC FEATURE OF BONDS

TABLE 14: THE BASIC FEATURE OF OPTIONS

Financial Instru- ment	Term	lssue date	Strike Price	Category
Options	Three months	Beginning of each quarter	The strike price is 80% to 120% of the price set in	Call and put option, European features
	One year	Beginning of each year	direct purchase part, every 5% is counted. There are nine various strike price.	

There are three different bond terms as shown above, representing short, medium and long

terms of bonds to let different scales of companies set up their production plan more conve-

nient and precise. For those large companies which require more carbon credit to match their

production can choose longer term bonds. In this way they can get more interest, namely carbon credit. Government can also benefit from it by obtaining more principal from the companies.

Once we introduce the options exchange into secondary market, companies and investors can benefit a lot from it, trading at a reasonable price.

There is also an upper limit as explained in the direct purchase part, the total interest (carbon credit) of the whole year ought to be no more than twice its actual emission amount last year.

There is no limitation in the option issue quantities. The trading rule is similar to the stock market, centralized price bidding and continuous auction institute. It is the trading between companies and investors, which means that governments will only charge fees instead of taking part in it. Moreover, we use cash instead of carbon credit to make settlement. Therefore, the traders can only have enough cash as margin not carbon credit.

4.2 ISSUE ARRANGEMENT OF FINANCIAL INSTRUMENT

The interest is almost the same among the same bonds so that the companies can get stable carbon credit to produce, reducing the possibility of wasting and discontinued production. Meanwhile, we issue more short term bonds because of their flexibility and mobility. The newlyestablished companies have a preference for these bonds. As shown in Table 10 that the total subscription of bonds each year has risen up to 100 million, we assume that 50 million of carbon credit would be used by the large companies. Eventually we get our deign of carbon credit bonds shown in the Table 15.

Year	Tot	tal issue amou	unt	Interest of the whole year			Total interest of the whole year	
	One year's bond	Six years' bond	Twelve years' maturity	One year's bond	Six years' bond	Twelve years' bond	Due amount	Actual counted amount
2020	32,573,825	1,500,000	500,000	130,295,300	30,000,000	20,000,000	180,295,300	180,295,298
2021	31,525,596	0	0	126,102,384	30,000,000	20,000,000	176,102,384	176,102,384
2022	30,477,368	0	0	121,909,472	30,000,000	20,000,000	171,909,472	171,909,470
2023	29,429,139	0	0	117,716,556	30,000,000	20,000,000	167,716,556	167,716,557
2024	28,380,911	0	0	113,523,644	30,000,000	20,000,000	163,523,644	163,523,643
2025	27,332,682	0	0	109,330,728	30,000,000	20,000,000	159,330,728	159,330,729
2026	26,284,454	1,500,000	0	105,137,816	30,000,000	20,000,000	155,137,816	155,137,815
2027	25,236,225	0	0	100,944,900	30,000,000	20,000,000	150,944,900	150,944,901
2028	24,187,997	0	0	96,751,988	30,000,000	20,000,000	146,751,988	146,751,988
2029	23,139,769	0	0	92,559,076	30,000,000	20,000,000	142,559,076	142,559,074
2030	22,091,540	0	0	88,366,160	30,000,000	20,000,000	138,366,160	138,366,160

TABLE 15: THE ARRANGEMENT OF CARBON CREDIT BONDS

4.3 PRICE OF FINANCIAL INSTRUMENT

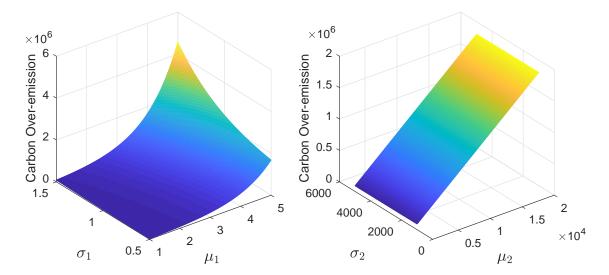
We take the pricing in direct purchase as references and also take the present value of principal

and interest into consideration, pricing is given in Table 16.

Year		Price	
Tear	One year maturity	Six years maturity	Twelve years maturity
2020	4,512	95,405	327,917
2021	4,361	-	-
2022	4,228	-	-
2023	4,113	-	-
2024	4,016	-	-
2025	3,936	-	-
2026	3,873	84,502	-
2027	3,828	-	-
2028	3,800	-	-
2029	3,789	-	-
2030	3,796	-	-

4.4 IMPACT OF FINANCIAL INSTRUMENT

The impact of financial instrument's design and engagement measures are given in Table 17.


TABLE 17: IMPACT OF FINANCIAL INSTRUMENT'S DESIGN AND ENGAGEMENT MEASURES

	Government	Enterprises	Factors and actions that can be considered and taken by government
Advan- tages	 When a company purchases bonds, its carbon emissions can be better estimated, and the government can make further emission reduction measures accordingly; The government can obtain principal, transaction fees and taxes to meet the various needs of government functions; Medium and long-term bonds can ensure the normal production of enterprises for a long time, and at the same time give enterprises a longer time to develop emission reduction technologies; The risk of over-emissions has greatly decreased after the company purchased bonds. 	 Carbon bonds can enable enterprises to obtain a fixed carbon credit and reduce the shortage of carbon credit; Interest and spread income can also be obtained by purchasing carbon bonds. 	The degree of perfection of the trading system of the carbon credit financial instrument market: After an enterprise purchases carbon bonds or purchases carbon options, in addition to reducing the risk of carbon credit shortage, it also has investment and speculative purposes. Therefore, the improvement of the financial instrument market trading system is important to improve corporate participation. The government needs to formulate and continuously improve relevant laws and regulations, and at the same time set up special supervision departments to maintain the orderly operation of the carbon financial market. Diversity of financial products: If government want to encourage companies to participate in carbon trading markets, government can also research and develop more carbon financial services, such as carbon funds and carbon repurchases. Diversity of financial products can increase the
Disadvan- tage	 There is a certain market risk, namely the influx of large numbers of speculators, increasing market volatility; The medium and long-term bond issuance of carbon credit has a long cycle, and there may be a risk of excess carbon credit issuance. 	 There is a purchase risk, namely the actual allocation quota is much smaller than its purchase quota, resulting in a large gap in carbon credit; Part of the funds need to shift from financial assets with higher returns to carbon assets with lower returns, reducing overall investment returns. 	diversity of carbon financial markets. The government can unite financial institutions to develop carbon credit-based financing leasing business, carbon fund wealth management products, factoring business, etc.

5 ENTERPRISE RISK MANAGEMENT

5.1 CARBON OVER-EMISSION RISK

We assume that the average number of over-emission companies each year(n) and the average emission amount of carbon dioxide(q) obey log-normal distribution $LN(\mu_1, \sigma_1^2)$ and normal distribution $N(\mu_2, \sigma_2^2)$ respectively to evaluate the risk level. They are independent so the total emission amount is nq. Therefore, generally, we assume $\mu_1 = 4, \sigma_1 = 1, \mu_2 = 10,000$ and $\sigma_2 = 2,500$. n is greater than 0 and varies within a small range, so the log-normal distribution is assumed, with μ_1 and σ_1 be 4 and 1, respectively, indicating that n is around 90, which is close to the reality. On the contrary, q is not easy to control, so the normal distribution with a larger change than the log-normal is used. μ_2 and σ_2 are set to 10,000 and 2,500 respectively, therefore the over-emission of most enterprises (99.7%) is concentrated between 2500 and 17,500, which is resonable. When one distribution is determined in the general situation, we can observe the variation of the parameter in the other distribution from Figure 3.

FIGURE 3: THE EFFECT ON THE EXPECTED OVER-EMISSION AMOUNT CAUSED BY THE DISTRIBUTION PARAMETER OF N AND Q

As shown in Figure 3, when the distribution of q is certain, the expected over-emission

amount has positive correlation with μ_1 and σ_1 (in the distribution n). The expected over-emission amount is more sensible to the distribution of n with the bigger amount of μ_1 and σ_1 . When the distribution of n is certain, the expected over-emission amount has positive correlation with μ_2 and σ_2 (in the distribution q) and certain sensibility.

Table 18 and Table 19 shows the ranges of the parameters when the other distribution parameter is certain under the 90% possibility of 90% of the plan (90% of the due reduction of carbon dioxide emission, namely the over-emission amount ought to be less than 2,096,456). We can figure out the conclusion that control over average number of over-emission companies(n) is more vital than the average over-emission amount(q).

σ_1 is kn	iown	μ_1 is known		
The value of σ_1	The possible maximum value of μ_1	The value of μ_1	The possible maximum value of σ_1	
0.2	5.0894	3.00	1.8324	
0.4	4.8334	3.25	1.6370	
0.6	4.5774	3.50	1.4417	
0.8	4.3214	3.75	1.2464	
1.0	4.0654	4.00	1.0511	
1.2	3.8094	4.25	0.8558	
1.4	3.5534	4.50	0.6605	
1.6	3.2974	4.75	0.4652	
1.8	3.0414	5.00	0.2699	

TABLE 18: THE MAXIMUM PARAMETER IN DISTRIBUTION N WHEN Q = 10,000

TABLE 19: THE MAXIMUM PARAMETER IN DISTRIBUTION Q WHEN N = 90

σ_2 is kn	iown	μ_2 is known		
The value of σ_2	The possible maximum value of μ_2	The value of μ_2	The possible maximum value of σ_2	
500	22,650	2,000	16,632	
1,000	22,010	4,000	15,070	
1,500	21,370	6,000	13,507	
2,000	20,730	8,000	11,945	
2,500	20,090	10,000	10,382	
3,000	19,450	12,000	8,820	
3,500	18,810	14,000	7,257	
4,000	18,170	16,000	5,695	
4,500	17,530	18,000	4,132	

Table 20 also gives the possibility in the accomplishment of 90% of the annual goal in the

extreme condition.

Parameters	Scenario Analysis				
Farameters	Worst Scenario	Base Scenario	Best Scenario		
μ_1	5	4	3		
σ_1	1.8	1.0	0.2		
μ_2	18,000	10,000	2,000		
σ_2	4,500	2,500	500		
The Possibility of NOT Achieving Maximum Over-emission	45.41%	90.88%	100%		

TABLE 20: THE POSSIBILITY OF ACHIEVING 90% OF THE ANNUAL GOAL IN EXTREME SITUATION

5.2 ECONOMIC RISK

The effect that brought about by the changes of market yield and GDP are the main uncertainty to the government's benefit, taking economic risk which means the influence of social economic circumstances into regard. We have already had assumptions on market yield, GDP in Table 3 and Table 4 so we can have several results on sensitivity analysis in Table 21. It is shown in Table 21 that, government's revenue surplus is calculated by government's revenue under given market yield or GDP minus revenue of base scenario (our original assumption). It is shown in Table 21 that government's revenue is more sensible to the changes of GDP.

TABLE 21: THE SENSIBILITY ANALYSIS OF ECONOMIC RISK

	Market yield	GDP			
Market Yield	Government Revenue Surplus (P)	Real GDP/ Estimated GDP	Government Revenue Surplus (P)		
2.0%	-7,423,110,927	90%	37,342,383,406		
2.1%	-5,915,342,882	92%	29,873,906,725		
2.2%	-4,419,260,632	94%	22,405,430,044		
2.3%	-2,934,750,705	96%	14,936,953,362		
2.4%	-1,461,700,844	98%	7,468,476,681		
2.5%	0	100%	0		
2.6%	1,450,461,691	102%	-7,468,476,681		
2.7%	2,889,792,917	104%	-14,936,953,362		
2.8%	4,318,101,206	106%	-22,405,430,044		
2.9%	5,735,492,940	108%	-29,873,906,725		
3.0%	7,142,073,368	110%	-37,342,383,406		

The government's revenue surplus in extreme situation is shown in Table 22.

Parameters	Scenario Analysis				
Faiameters	Worst Scenario	Base Scenario	Best Scenario		
Market yield	2.0%	2.5%	3.0%		
Real GDP/ Estimated GDP	110%	100%	90%		
Government revenue surplus (P)	-44,883,143,962	0	44,370,413,340		

TABLE 22: THE GOVERNMENT'S REVENUE SURPLUS IN EXTREME SITUATION

6 CONCLUSION

This report develops a reasonable and detailed plan for Pullanta's carbon reduction and environmental funding goals, including a series of design and impact analysis of carbon credit and carbon financial instruments, as well as internal risk analysis. Under our plan and risk analysis, the government has a more than 90% chance of achieving 90% of the annual goals, and at the same time can obtain profits of about 2,900 billion to 3,800 billion Pulo to finance environmental activities. Therefore, it's strongly recommend that Pullanta adopts the implementation plan in this report.

References

- [1] https://www.ipcc.ch/documentation/
- [2] Yang P, Yao Y F, Mi Z, et al. (2018). Social cost of carbon under shared socioeconomic pathways. Global Environmental Change.
- [3] Tol, Richard. (2019). A social cost of carbon for (almost) every country. Energy Economics.
- [4] https://en.wikipedia.org/wiki/European_Union_Emission_Trading_Scheme
- [5] Zhang H Y Y. (2018). A Study on the System of Free Allocation of Carbon Emissions Quotas-Taking US Carbon Emission Trading System as an Example. Legal and Economy.

- [6] https://www.footprintnetwork.org/our-work/ecological-footprint/
- [7] Kurt Kratena. (2008). From ecological footprint to ecological rent: An economic indicator for resource constraints. Ecological Economics.
- [8] https://ctxglobal.com/
- [9] Perdan S, Azapagic A. (2011). Carbon trading: Current schemes and future developments. Energy Policy.

APPENDICES

APPENDIX A-1 FEDERAL FUNDS RATE IN 1995-2018

1995/1/1	5.53 1999/3/1	4.81	2003/5/1	1.26	2007/7/1	5.26	2011/9/1	0.08	2015/11/1	0.12
1995/2/1	5.92 1999/4/1	4.74	2003/6/1	1.22	2007/8/1	5.02	2011/10/1	0.07	2015/12/1	0.24
1995/3/1	5.98 1999/5/1	4.74	2003/7/1	1.01	2007/9/1	4.94	2011/11/1	0.08	2016/1/1	0.34
1995/4/1	6.05 1999/6/1	4.76	2003/8/1	1.03	2007/10/1	4.76	2011/12/1	0.07	2016/2/1	0.38
1995/5/1	6.01 1999/7/1	4.99	2003/9/1	1.01	2007/11/1	4.49	2012/1/1	0.08	2016/3/1	0.36
1995/6/1	6.00 1999/8/1	5.07	2003/10/1	1.01	2007/12/1	4.24	2012/2/1	0.10	2016/4/1	0.37
1995/7/1	5.85 1999/9/1	5.22	2003/11/1	1.00	2008/1/1	3.94	2012/3/1	0.13	2016/5/1	0.37
1995/8/1	5.74 1999/10/1	5.20	2003/12/1	0.98	2008/2/1	2.98	2012/4/1	0.14	2016/6/1	0.38
1995/9/1	5.80 1999/11/1	5.42	2004/1/1	1.00	2008/3/1	2.61	2012/5/1	0.16	2016/7/1	0.39
1995/10/1	5.76 1999/12/1	5.30	2004/2/1	1.01	2008/4/1	2.28	2012/6/1	0.16	2016/8/1	0.40
1995/11/1	5.80 2000/1/1	5.45	2004/3/1	1.00	2008/5/1	1.98	2012/7/1	0.16	2016/9/1	0.40
1995/12/1	5.60 2000/2/1	5.73	2004/4/1	1.00	2008/6/1	2.00	2012/8/1	0.13	2016/10/1	0.40
1996/1/1	5.56 2000/3/1	5.85	2004/5/1	1.00	2008/7/1	2.01	2012/9/1	0.14	2016/11/1	0.41
1996/2/1	5.22 2000/4/1	6.02	2004/6/1	1.03	2008/8/1	2.00	2012/10/1	0.16	2016/12/1	0.54
1996/3/1	5.31 2000/5/1	6.27	2004/7/1	1.26	2008/9/1	1.81	2012/11/1	0.16	2017/1/1	0.65
1996/4/1	5.22 2000/6/1	6.53	2004/8/1	1.43	2008/10/1	0.97	2012/12/1	0.16	2017/2/1	0.66
1996/5/1	5.24 2000/7/1	6.54	2004/9/1	1.61	2008/11/1	0.39	2013/1/1	0.14	2017/3/1	0.79
1996/6/1	5.27 2000/8/1	6.50	2004/10/1	1.76	2008/12/1	0.16	2013/2/1	0.15	2017/4/1	0.90
1996/7/1	5.40 2000/9/1	6.52	2004/11/1	1.93	2009/1/1	0.15	2013/3/1	0.14	2017/5/1	0.91
1996/8/1	5.22 2000/10/1	6.51	2004/12/1	2.16	2009/2/1	0.22	2013/4/1	0.15	2017/6/1	1.04
1996/9/1	5.30 2000/11/1	6.51	2005/1/1	2.28	2009/3/1	0.18	2013/5/1	0.11	2017/7/1	1.15
1996/10/1	5.24 2000/12/1	6.40	2005/2/1	2.50	2009/4/1	0.15	2013/6/1	0.09	2017/8/1	1.16
1996/11/1	5.31 2001/1/1	5.98	2005/3/1	2.63	2009/5/1	0.18	2013/7/1	0.09	2017/9/1	1.15
1996/12/1	5.29 2001/2/1	5.49	2005/4/1	2.79	2009/6/1	0.21	2013/8/1	0.08	2017/10/1	1.15
1997/1/1	5.25 2001/3/1	5.31	2005/5/1	3.00	2009/7/1	0.16	2013/9/1	0.08	2017/11/1	1.16
1997/2/1	5.19 2001/4/1	4.80	2005/6/1	3.04	2009/8/1	0.16	2013/10/1	0.09	2017/12/1	1.30
1997/3/1	5.39 2001/5/1	4.21	2005/7/1	3.26	2009/9/1	0.15	2013/11/1	0.08	2018/1/1	1.41
1997/4/1	5.51 2001/6/1	3.97	2005/8/1	3.50	2009/10/1	0.12	2013/12/1	0.09	2018/2/1	1.42
1997/5/1	5.50 2001/7/1	3.77	2005/9/1	3.62	2009/11/1	0.12	2014/1/1	0.07	2018/3/1	1.51
1997/6/1	5.56 2001/8/1	3.65	2005/10/1	3.78	2009/12/1	0.12	2014/2/1	0.07	2018/4/1	1.69
1997/7/1	5.52 2001/9/1	3.07	2005/11/1	4.00	2010/1/1	0.11	2014/3/1	0.08	Average rate in 1995-2018	2.53
1997/8/1	5.54 2001/10/1	2.49	2005/12/1	4.16	2010/2/1	0.13	2014/4/1	0.09		
1997/9/1	5.54 2001/11/1	2.09	2006/1/1	4.29	2010/3/1	0.16	2014/5/1	0.09	-	
1997/10/1	5.50 2001/12/1	1.82	2006/2/1	4.49	2010/4/1	0.20	2014/6/1	0.10	-	
1997/11/1	5.52 2002/1/1	1.73	2006/3/1	4.59	2010/5/1	0.20	2014/7/1	0.09		
1997/12/1	5.50 2002/2/1	1.74	2006/4/1	4.79	2010/6/1	0.18	2014/8/1	0.09	-	
1998/1/1	5.56 2002/3/1	1.73	2006/5/1	4.94	2010/7/1	0.18	2014/9/1	0.09	-	
1998/2/1	5.51 2002/4/1	1.75	2006/6/1	4.99	2010/8/1	0.19	2014/10/1	0.09		
1998/3/1	5.49 2002/5/1	1.75	2006/7/1	5.24	2010/9/1	0.19	2014/11/1	0.09	-	
1998/4/1	5.45 2002/6/1	1.75	2006/8/1	5.25	2010/10/1	0.19	2014/12/1	0.12	- 	
1998/5/1	5.49 2002/7/1	1.73	2006/9/1	5.25	2010/11/1	0.19	2015/1/1	0.11		
1998/6/1	5.56 2002/8/1	1.74	2006/10/1	5.25	2010/12/1	0.18	2015/2/1	0.11	-	
1998/7/1	5.54 2002/9/1	1.75	2006/11/1	5.25	2011/1/1	0.17	2015/3/1	0.11		
1998/8/1	5.55 2002/10/1	1.75	2006/12/1	5.24	2011/2/1	0.16	2015/4/1	0.12	-	
1998/9/1	5.51 2002/11/1	1.34	2007/1/1	5.25	2011/3/1	0.14	2015/5/1	0.12	-	
1998/10/1	5.07 2002/12/1	1.24	2007/2/1	5.26	2011/4/1	0.10	2015/6/1	0.13	- 	
1998/11/1	4.83 2003/1/1	1.24	2007/3/1	5.26	2011/5/1	0.09	2015/7/1	0.13	-	
1998/12/1	4.68 2003/2/1	1.26	2007/4/1	5.25	2011/6/1	0.09	2015/8/1	0.14	-	
1999/1/1	4.63 2003/3/1	1.25	2007/5/1	5.25	2011/7/1	0.07	2015/9/1	0.14	l	
1999/2/1	4.76 2003/4/1	1.26	2007/6/1	5.25	2011/8/1	0.10	2015/10/1	0.12		

TABLE 23: FEDERAL FUNDS RATE IN 1995-2018

APPENDIX A-2 CONSUMPTION% OF GDP IN TEN MAJOR CONTURIES IN

1995-2018

TABLE 24: CONSUMPTION% OF GDP IN TEN MAJOR CONTURIES IN 1995-2018

						enditure (% of GDF				
Year	United States	China	Japan	Germany	India	France	United Kingdom	Italy	Brazil	Canada
1995	79.90227166	59.01204259	68.85305137	75.26641367	74.2407284	77.88705816	81.17864595	76.29723129	84.63436358	77.73256789
1996	79.49197349	59.99802585	68.70120951	76.02327494	74.88610785	78.5957616	81.0782093	76.11424411	84.90822573	77.43794507
1997	78.77907426	59.59809157	68.99203864	75.54659256	74.94055852	77.53510466	81.71576786	76.78723802	84.84492449	76.98406903
1998	78.83702215	60.40270219	69.66787143	74.75069747	75.71862376	76.57319794	82.4047998	77.23234744	84.21283234	77.18615804
1999	79.23607178	62.52089643	71.32660755	75.44394702	76.18497615	76.24402302	83.18698787	77.98619665	84.4628102	75.82885496
2000	79.98304416	63.48985625	71.2635512	75.34377386	75.68681661	76.18324276	83.2822678	78.28554983	83.36054608	73.88684332
2001	81.30005862	61.82998775	72.77939981	75.41297283	75.90830732	76.26270966	83.82822325	77.89342345	83.45100339	74.86709835
2002	82.18162596	60.85254874	73.99368433	74.97334085	74.34374182	76.69434177	84.18941358	77.67175614	81.70809738	76.06015207
2003	82.64874706	57.86049515	73.90731134	75.78910005	72.37996752	77.38776672	84.33653499	78.36508416	80.92212891	75.83924717
2004	82.41011307	55.04567401	73.62968827	74.96039814	68.75625029	77.09767321	84.91131163	78.14823052	78.67416111	74.38894394
2005	82.15171096	54.15778574	73.74113965	75.31444603	67.74487013	77.46192462	84.56821512	78.92945487	79.3942532	73.61731737
2006	82.04129425	52.28278908	73.83734845	74.01319872	65.91241587	76.99554852	83.85793699	78.86358666	79.47659338	73.88338213
2007	82.37868421	50.43810925	73.6238269	71.84897282	65.6226268	76.54942927	83.43279643	78.09333161	78.81793519	74.17275276
2008	83.79566133	49.32465143	75.0031159	72.4802375	67.21529714	77.0284785	84.68159939	78.98881199	78.57018556	74.36553306
2009	84.93921993	49.56083632	78.12537666	76.43243531	67.41955589	79.45824825	86.6592184	81.11168898	81.60709829	79.73892488
2010	84.68472751	48.28651788	77.24200811	74.67189206	65.73246563	79.34494702	85.90778481	81.2782873	79.23966126	78.65866168
2011	84.62470237	49.39582361	78.43970953	73.45661504	67.29165678	78.72704068	85.24862271	80.93250074	78.9431496	77.22888353
2012	83.48946017	50.33845304	78.89219512	74.18382623	67.14481002	78.66937252	85.33312387	81.1067223	79.94197011	77.26408925
2013	82.51022004	50.6503282	79.12581612	74.18777456	67.94092623	78.74738627	84.97605926	80.70869948	80.60772546	76.85577898
2014	82.11607771	51.19640508	78.54906631	73.0112761	68.56857391	78.43559645	84.2841215	80.14526311	82.11309521	76.24315389
2015	81.78430552	52.80907633	76.39641888	72.43852452	69.43557179	77.85412512	83.96689231	79.87895044	83.74161724	78.86965984
2016	82.42770536	54.03746513	75.60245932	72.42305606	69.64465588	77.99567527	84.21902711	79.15368815	84.62553882	79.59951063
2017	82.46830483	53.26216384	75.16214263	72.15140879	70.01304813	77.69255136	83.67812008	79.10502569	83.96194416	78.80893256
2018	82.27559102	53.35283033	75.33149236	72.03993577	70.61824541	77.31812213	84.01170315	79.33994116	84.04865204	79.01875753
Average	81.93573614	54.98764816	74.25777206	74.25683795	70.55628324	77.61413856	83.9557243	78.85071892	81.9278547	76.60571741
Total Average	75.49484314									
Data From	THE WORLD BANK									

APPENDIX B-1 ESTIMATE OF FUTURE POPULATION AND GDP

Year	Estimated GDP	Estimated Population
2020	746,481,636,019	20,157,090
2021	767,215,919,294	20,314,180
2022	787,950,202,569	20,471,270
2023	808,684,485,844	20,628,360
2024	829,418,769,119	20,785,450
2025	850,153,052,394	20,942,540
2026	870,887,335,669	21,099,630
2027	891,621,618,944	21,256,720
2028	912,355,902,219	21,413,810
2029	933,090,185,494	21,570,900
2030	953,824,468,769	21,727,990
2031	974,558,752,044	21,885,080
2032	995,293,035,319	22,042,170
2033	1,016,027,318,594	22,199,260
2034	1,036,761,601,869	22,356,350
2035	1,057,495,885,144	22,513,440
2036	1,078,230,168,419	22,670,530
2037	1,098,964,451,694	22,827,620
2038	1,119,698,734,969	22,984,710
2039	1,140,433,018,244	23,141,800
2040	1,161,167,301,519	23,298,890

TABLE 25: ESTIMATED GDP AND ESTIMATED POPULATION

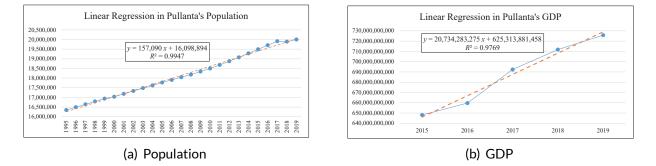
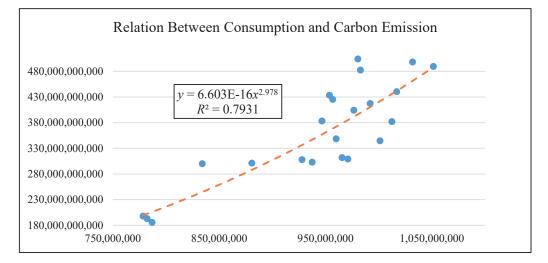



FIGURE 4: LINEAR REGRESSION RESULT

APPENDIX B-2 FIT RESULT OF CONSUMPTION AND CARBON EMISSION

Year	Carbon Emission ¹	Consumption ²	Carbon Emission (Three-order Moving Average)	Consumption (Three-order Moving Average)
1999	773,801,464	199,739,197,319	-	-
1998	780,690,381	203,965,756,216	778,399,239	197,913,813,823
1996	780,705,871	190,036,487,933	782,222,048	192,879,774,780
1995	785,269,891	184,637,080,191	786,809,969	185,586,843,124
1997	794,454,145	182,086,961,248	834,055,033	300,172,933,089
2018	922,441,064	533,794,757,829	880,766,614	301,158,978,992
2001	925,404,633	187,595,217,899	927,839,499	307,855,994,027
2002	935,672,800	202,178,006,352	937,537,321	303,013,456,174
2017	951,534,529	519,267,144,270	946,565,123	383,143,008,670
2009	952,488,040	427,983,875,387	953,660,484	433,455,784,322
2006	956,958,884	353,116,333,310	956,807,627	425,274,065,879
2016	960,975,959	494,721,988,940	959,943,275	348,631,357,155
2000	961,894,982	198,055,749,214	965,461,151	311,940,485,818
2003	973,512,511	243,043,719,299	970,936,352	309,064,268,411
2015	977,401,563	486,093,336,720	976,657,663	404,283,948,147
2008	979,058,916	483,714,788,421	980,371,821	504,240,677,343
2014	984,654,985	542,913,906,887	982,802,688	482,666,900,098
2007	984,694,165	421,372,004,987	992,035,772	417,512,718,268
2004	1,006,758,165	288,252,242,930	1,001,317,400	344,709,041,490
2005	1,012,499,870	324,502,876,553	1,012,430,611	382,145,982,143
2013	1,018,033,799	533,682,826,948	1,016,910,082	440,527,255,992
2010	1,020,196,579	463,396,064,475	1,031,829,245	498,435,323,633
2012	1,057,257,356	498,227,079,476	1,051,390,929	489,548,329,219
2011	1,076,718,852	507,021,843,707	-	-

TABLE 26: CARBON EMISSION AND CONSUMPATION

FIGURE 5: FIT RESULT OF CONSUMPTION AND CARBON EMISSION

¹Sorted ascending

²Calculated by 75% of GDP

³Calculated by total ecological footprint minus total biocapacity

APPENDIX C SUPPORTING CALCULATION AND STATISTICS

Appendix C-1 Annual and Ultimate Goal of Carbon Emission.xlsx is referred to the specific calculation of Table 6.

Appendix C-2 Statistics of Carbon Emission of Each Company.xlsx is referred to the specific calculation of Table 9 and carbon emission annual growth in each company.

Appendix C-3 Issue Arrangement of Carbon Credit.xlsx is referred to the specific calculation of Table 10.

Appendix C-4 Calculation of Carbon Credit's Cost and Price.xlsx is referred to the specific calculation of Table 11.

Appendix C-5 Issue Arrangement of Carbon Bonds.xlsx is referred to the specific calculation of Table 15.

Appendix C-6 Issue Price of Carbon Bonds.xlsx is referred to the specific calculation of Table 15.

Appendix C-7 Sensitivity Analysis - Carbon Over-emission Risk.xlsx is referred to the specific calculation of Table 18, 19, 20.

Appendix C-8 Sensitivity Analysis - Economic Risk.xlsx is referred to the specific calculation of Table 21, 22.