Application of Deep Reinforcement Learning in Asset Liability Management

By Takura Wekwete, FIA, FASSA

2024 Actuarial Research Conference (ARC) Middle Tennessee State University (MTSU)

19 July 2024

AGENDA

1. Al in Actuarial Science

2. The Asset Liability Management problem

3. Reinforcement Learning implementation for risk management

4. Results

5. Conclusion

AI IN FINANCIAL RISK APPLICATIONS

VARIOUS TYPES OF REINFORCEMENT LEARNING

THE ASSET LIABILITY MANAGEMENT PROBLEM

Scan to access paper

Intelligent Systems with Applications Volume 20, November 2023, 200286

Application of deep reinforcement learning in asset liability management

<u>Takura Asael Wekwete</u>^{a 1} ♀ ⊠, <u>Rodwell Kufakunesu</u>^b ⊠, <u>Gusti van Zyl</u>^b ⊠

https://www.sciencedirect.com/science/article/pii/S2667305323001114?via%3Dihub

OBJECTIVES OF ASSET LIABILITY MANAGEMENT

Asset Liability Management (ALM) \approx Liability Driven Investing (LDI)

Primary objectives = allocate assets such that:

- 1. Asset portfolio value sufficient for obligations
- 2. Timing of asset cashflows appropriate for obligations
- 3. Conditions 1) & 2) are maintained

Secondary objectives:

- Optimising for investment returns
- Reducing other risks
- □ Regulatory compliance
- Minimising costs

CashBonds/T-billsPropertyEquities/SharesAlternativesImage: Second second

CONVENTIONAL APPROACH - REDINGTON IMMUNISATION

Conditions for interest rate risk management:

1.
$$A = L$$
 where $A = \int_0^\infty A_t e^{-rt} dt$ and $L = \int_0^\infty L_t e^{-rt} dt$. Sufficient asset value
2. $\frac{\partial A}{\partial r} = \frac{\partial L}{\partial r}$. Macaulay Duration $= \frac{\sum_{t=1}^n (PV \times CF) \times t}{Market Price of Bond}$
Modified Duration $= \frac{Macaulay Duration}{1 + \frac{YTM}{n}}$
3. $\frac{\partial^2 A}{\partial r^2} \ge \frac{\partial^2 L}{\partial r^2}$. Convexity Stability in 1 & 2

TYPICAL CONVENTIONAL ALM IMPLEMENTATION

CONVENTIONAL ALM APPROACHES LIMITATIONS

1 PROCESS LIMITATIONS

- Frequent rebalancing
- Secondary objectives
- Time-consuming

2 THEORETICAL LIMITATIONS

- Assumes interest rate structure
- Assumes parallel shifts
- Unavailable assets ambiguity

3 EXCESSIVE HUMAN DEPENDENCY

- Human error
- Human irrationality
- Biases & emotions

4 GOVERNANCE ISSUES

- Governance & incentives
- US Regional banking crisis
- UK LDI crisis

REINFORCEMENT LEARNING SOLUTION TO FINANCIAL RISK MANAGEMENT

REINFORCEMENT LEARNING COMPONENTS

5. Reward function: Minimise difference btwn timing of asset & liability portfolio

DEEP REINFORCEMENT LEARNING COMPONENTS

AGENT EQUIPPED WITH DEEP NEURAL NETWORK

Experiment & exploit ..

- + ... depth of perception
- + ... long-term strategy

Required because of:

- □ Highly dynamic environments
- □ Large state spaces
- □ Large action spaces
- Non-linear states-action mapping

In OOP Framework + TensorFlow

SIMULATED ENVIRONMENT FOR TRAINING

REINFORCEMENT LEARNING TRAINING PROCESS

Algorithm 1 Reinforcement Learning for Asset Liability Management

- 1: Define the Agent class along with its attributes:
 - TensorFlow computational graph
 - Neural Network (LSTM-RNN)
 - Reward Function

2:	for $epoch = 1, 2, \ldots, k, \ldots, K$ do
3:	for $batch = 1, 2,, b,, B$ do
4:	Launch TensorFlow computational graph with data for b
5:	Apply policy $\pi_{\theta_{old}}$ from previous batch, $b-1$
6:	Evaluate the rewards at each time t and scenario, e_{it}
7:	Aggregate batch rewards, $\sum_{i \in Batch} \sum_{t=1}^{T} e_{it}^2$
8:	Update Agent policy $\pi_{\theta_{new}}$
9:	end for
10:	end for

REINFORCEMENT LEARNING TRAINING PROCESS

Reward Function Batch SSE by Training Epoch

 $e_{it} = \omega_{1it} T(Z_1)_{it} + \omega_{2it} T(Z_2)_{it} - D_{it}$.

RESEARCH METHODOLOGY

1. Simulate an environment typical of a risk-taking financial institution

2. Define a solution based on conventional methods

3. Define and train the reinforcement learning framework

4. Apply 2. and 3. to new unseen test data

5. Compare results

1) DRL PERFORMANCE VS REDINGTON IMMUNISATION

RESULTS

DRL ALM VS CONVENTIONAL ALM EXAMPLE

DRL ALM VS CONVENTIONAL AGGREGATED

95% of DRL ALM outcomes and Redington immunisation are within 1% of each other

19

2) DRL ALM STRESS TESTING & ADAPTABILITY

RESULTS

STRESS TESTING SCENARIO EXAMPLE

DRL ALM STRESS TESTING RESULTS AGGREGATE

95% of DRL ALM outcomes are within 2% of the appropriate duration outcomes

3) COMPARISON TO A BENCHMARK DSTRATEGY

RESULTS

DRL ALM VS BENCHMARK STRATEGY EXAMPLE

DRL ALM VS CONVENTIONAL STRATEGY AGGREGATED

DRL ALM approach had ALM outcomes 3 times less sensitive to interest changes under similar conditions

SUMMARY

- 1. DRL ALM achieves at least the same level of performance as Redington immunisation under stable conditions
- 2. DRL ALM is more robust in extreme market conditions
- 3. DRL ALM significantly out-performs practical traditional strategies
- 4. Other RL relative strengths
 - Automated & continuously learns
 - Less reliance on theory
 - Interoperable & scalable
 - Multi-objective optimisation

RL USE CASES TO EXPLORE

1 INVESTMENT PORTFOLIO ALLOCATION

2 USER EXPERIENCE & BEHAVIOUR

3 PRICING & UNDERWRITING

4 DISTRIBUTION & CLIENT RETENTION

"...we cannot leave AI only to developers.."

Larry Summers

THANK YOU

takurawekwete@gmail.com

https://www.linkedin.com/in/takurawekwete-asael/